File size: 5,173 Bytes
599d360 37c8b9e 599d360 37c8b9e 599d360 37c8b9e 599d360 37c8b9e 599d360 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e e1b13ed 37c8b9e 599d360 37c8b9e 6a5c1db 599d360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
tags:
- biology
- genomics
- medical
configs:
- config_name: demo_coding_vs_intergenomic_seqs
data_files:
- split: train
path: demo_coding_vs_intergenomic_seqs/train/*.csv.gz
- split: test
path: demo_coding_vs_intergenomic_seqs/test/*.csv.gz
- config_name: demo_human_or_worm
data_files:
- split: train
path: demo_human_or_worm/train/*.csv.gz
- split: test
path: demo_human_or_worm/test/*.csv.gz
- config_name: drosphilia_enhancers_stark
data_files:
- split: train
path: drosphilia_enhancers_stark/train/*.csv.gz
- split: test
path: drosphilia_enhancers_stark/test/*.csv.gz
- config_name: dummy_mouse_enhancers_ensembl
data_files:
- split: train
path: dummy_mouse_enhancers_ensembl/train/*.csv.gz
- split: test
path: dummy_mouse_enhancers_ensembl/test/*.csv.gz
- config_name: human_enhancers_cohn
data_files:
- split: train
path: human_enhancers_cohn/train/*.csv.gz
- split: test
path: human_enhancers_cohn/test/*.csv.gz
- config_name: human_enhancers_ensembl
data_files:
- split: train
path: human_enhancers_ensembl/train/*.csv.gz
- split: test
path: human_enhancers_ensembl/test/*.csv.gz
- config_name: human_ensembl_regulatory
data_files:
- split: train
path: human_ensembl_regulatory/train/*.csv.gz
- split: test
path: human_ensembl_regulatory/test/*.csv.gz
- config_name: human_nontata_promoters
data_files:
- split: train
path: human_nontata_promoters/train/*.csv.gz
- split: test
path: human_nontata_promoters/test/*.csv.gz
- config_name: human_ocr_ensembl
data_files:
- split: train
path: human_ocr_ensembl/train/*.csv.gz
- split: test
path: human_ocr_ensembl/test/*.csv.gz
license: apache-2.0
---
# Genomic Benchmark
In this repository, we collect benchmarks for classification of genomic sequences. It is shipped as a Python package, together with functions helping to download & manipulate datasets and train NN models.
## Citing Genomic Benchmarks
If you use Genomic Benchmarks in your research, please cite it as follows.
### Text
GRESOVA, Katarina, et al. Genomic Benchmarks: A Collection of Datasets for Genomic Sequence Classification. bioRxiv, 2022.
### BibTeX
```bib
@article{gresova2022genomic,
title={Genomic Benchmarks: A Collection of Datasets for Genomic Sequence Classification},
author={Gresova, Katarina and Martinek, Vlastimil and Cechak, David and Simecek, Petr and Alexiou, Panagiotis},
journal={bioRxiv},
year={2022},
publisher={Cold Spring Harbor Laboratory},
url={https://www.biorxiv.org/content/10.1101/2022.06.08.495248}
}
```
From the [github repo](https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main):
# Datasets
Each folder contains either one benchmark or a set of benchmarks. See [docs/](../docs/) for code used to create these benchmarks.
### Naming conventions
* *dummy_...*: small datasets, used for testing purposes
* *demo_...*: middle size datasets, not necesarily biologically relevant or fully reproducible, used in demos
### Versioning
We recommend to check the version number when working with the dataset (i.e. not using default `None`). The version should be set to 0 when the dataset is proposed, after inicial curration it should be changed to 1 and then increased after every modification.
### Data format
Each benchmark should contain `metadata.yaml` file with its main folder with the specification in YAML format, namely
* **the version** of the benchmark (0 = in development)
* **the classes** of genomic sequences, for each class we further need to specify
- *url* with the reference
- *type* of the reference (currently, only fa.gz implemented)
- *extra_processing*, a parameter helping to overcome some know issues with identifiers matching
The main folder should also contain two folders, `train` and `test`. Both those folders should contain gzipped CSV files, one for each class (named `class_name.csv.gz`).
The format of gzipped CSV files closely resemble BED format, the column names must be the following:
* **id**: id of a sequence
* **region**: chromosome/transcript/... to be matched with the reference
* **start**, **end**: genomic interval specification (0-based, i.e. same as in Python)
* **strand**: either '+' or '-'
### To contribute a new datasets
Create a new branch. Add the new subfolders to `datasets` and `docs`. The subfolder of `docs` should contain a description of the dataset in `README.md`. If the dataset comes with the paper, link the paper. If the dataset is not taken from the paper, make sure you have described and understand the biological process behind it.
If you have access to `cloud_cache` folder on GDrive, upload your file there and update `CLOUD_CACHE` in [cloud_caching.py](https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/blob/main/src/genomic_benchmarks/loc2seq/cloud_caching.py).
### To review a new dataset
Make sure you can run and reproduce the code. Check you can download the actual sequences and/or create a data loader. Do you understand what is behind these data? (either from the paper or the description) Ask for clarification if needed. |