# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """TODO: Add a description here.""" import csv import json import os import datasets import synapseclient _DESCRIPTION = """\ This is a test Synapse dataset. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # Synapse ID for dataset _SYN_ID = "" # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class SynapseTestDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") # Custom download function for Synapse def _download_from_synapse(syn_id, path): syn = synapseclient.Synapse() syn.login() syn.get(entity=syn_id, downloadLocation=path) def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { "feature_a": datasets.Value("string"), "feature_b": datasets.Value("string"), "feature_c": datasets.Value("string") # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # This is where we can call the custom download function for Synapse data_dir = dl_manager.download_custom(_SYN_ID, self._download_from_synapse) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "dev.jsonl"), "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "test.jsonl"), "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) yield key, { "feature_a": data["feature_a"], "feature_b": data["feature_b"], "feature_c": "" if split == "test" else data["answer"], }