Local paths in common voice (#3736)
Browse files* Merge generators for local files and streaming
* add the streaming parameter to _split_generators
* update common_voice
* patrick's comment:
- pass streaming to _generate_examples
- separate in two methods
* add is_streaming attribute to the dl managers
* revert the streaming parameter being passed to _split_generators
Co-authored-by: anton-l <[email protected]>
Commit from https://github.com/huggingface/datasets/commit/e3c8e2541573b42b8dc23a4a29e197537d309bca
- common_voice.py +93 -17
common_voice.py
CHANGED
|
@@ -15,6 +15,8 @@
|
|
| 15 |
""" Common Voice Dataset"""
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
| 18 |
import datasets
|
| 19 |
from datasets.tasks import AutomaticSpeechRecognition
|
| 20 |
|
|
@@ -657,63 +659,135 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
| 657 |
|
| 658 |
def _split_generators(self, dl_manager):
|
| 659 |
"""Returns SplitGenerators."""
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 663 |
|
| 664 |
return [
|
| 665 |
datasets.SplitGenerator(
|
| 666 |
name=datasets.Split.TRAIN,
|
| 667 |
gen_kwargs={
|
| 668 |
-
"
|
| 669 |
-
"
|
|
|
|
| 670 |
"path_to_clips": path_to_clips,
|
| 671 |
},
|
| 672 |
),
|
| 673 |
datasets.SplitGenerator(
|
| 674 |
name=datasets.Split.TEST,
|
| 675 |
gen_kwargs={
|
| 676 |
-
"
|
| 677 |
-
"
|
|
|
|
| 678 |
"path_to_clips": path_to_clips,
|
| 679 |
},
|
| 680 |
),
|
| 681 |
datasets.SplitGenerator(
|
| 682 |
name=datasets.Split.VALIDATION,
|
| 683 |
gen_kwargs={
|
| 684 |
-
"
|
| 685 |
-
"
|
|
|
|
| 686 |
"path_to_clips": path_to_clips,
|
| 687 |
},
|
| 688 |
),
|
| 689 |
datasets.SplitGenerator(
|
| 690 |
name="other",
|
| 691 |
gen_kwargs={
|
| 692 |
-
"
|
| 693 |
-
"
|
|
|
|
| 694 |
"path_to_clips": path_to_clips,
|
| 695 |
},
|
| 696 |
),
|
| 697 |
datasets.SplitGenerator(
|
| 698 |
name="validated",
|
| 699 |
gen_kwargs={
|
| 700 |
-
"
|
| 701 |
-
"
|
|
|
|
| 702 |
"path_to_clips": path_to_clips,
|
| 703 |
},
|
| 704 |
),
|
| 705 |
datasets.SplitGenerator(
|
| 706 |
name="invalidated",
|
| 707 |
gen_kwargs={
|
| 708 |
-
"
|
| 709 |
-
"
|
|
|
|
| 710 |
"path_to_clips": path_to_clips,
|
| 711 |
},
|
| 712 |
),
|
| 713 |
]
|
| 714 |
|
| 715 |
-
def _generate_examples(self,
|
| 716 |
"""Yields examples."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 717 |
data_fields = list(self._info().features.keys())
|
| 718 |
|
| 719 |
# audio is not a header of the csv files
|
|
@@ -722,7 +796,7 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
| 722 |
|
| 723 |
all_field_values = {}
|
| 724 |
metadata_found = False
|
| 725 |
-
for path, f in
|
| 726 |
if path == filepath:
|
| 727 |
metadata_found = True
|
| 728 |
lines = f.readlines()
|
|
@@ -752,5 +826,7 @@ class CommonVoice(datasets.GeneratorBasedBuilder):
|
|
| 752 |
|
| 753 |
# set audio feature
|
| 754 |
result["audio"] = {"path": path, "bytes": f.read()}
|
|
|
|
|
|
|
| 755 |
|
| 756 |
yield path, result
|
|
|
|
| 15 |
""" Common Voice Dataset"""
|
| 16 |
|
| 17 |
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
import datasets
|
| 21 |
from datasets.tasks import AutomaticSpeechRecognition
|
| 22 |
|
|
|
|
| 659 |
|
| 660 |
def _split_generators(self, dl_manager):
|
| 661 |
"""Returns SplitGenerators."""
|
| 662 |
+
streaming = dl_manager.is_streaming
|
| 663 |
+
archive_path = dl_manager.download(_DATA_URL.format(self.config.name))
|
| 664 |
+
if streaming:
|
| 665 |
+
# Here we use iter_archive in streaming mode because dl_manager.download_and_extract
|
| 666 |
+
# doesn't work to stream TAR archives (we have to stream the files in the archive one by one).
|
| 667 |
+
#
|
| 668 |
+
# The iter_archive method returns an iterable of (path_within_archive, file_obj) for every
|
| 669 |
+
# file in the TAR archive.
|
| 670 |
+
#
|
| 671 |
+
archive_iterator = dl_manager.iter_archive(archive_path)
|
| 672 |
+
# we locate the data using the path within the archive
|
| 673 |
+
path_to_data = "/".join(["cv-corpus-6.1-2020-12-11", self.config.name])
|
| 674 |
+
path_to_clips = "/".join([path_to_data, "clips"])
|
| 675 |
+
metadata_filepaths = {
|
| 676 |
+
split: "/".join([path_to_data, f"{split}.tsv"])
|
| 677 |
+
for split in ["train", "test", "dev", "other", "validated", "invalidated"]
|
| 678 |
+
}
|
| 679 |
+
else:
|
| 680 |
+
# In non-streaming we can extract the archive locally as usual
|
| 681 |
+
extracted_dir = dl_manager.extract(archive_path)
|
| 682 |
+
archive_iterator = None
|
| 683 |
+
# we locate the data using the local path
|
| 684 |
+
path_to_data = os.path.join(extracted_dir, "cv-corpus-6.1-2020-12-11", self.config.name)
|
| 685 |
+
path_to_clips = os.path.join(path_to_data, "clips")
|
| 686 |
+
metadata_filepaths = {
|
| 687 |
+
split: os.path.join(path_to_data, f"{split}.tsv")
|
| 688 |
+
for split in ["train", "test", "dev", "other", "validated", "invalidated"]
|
| 689 |
+
}
|
| 690 |
|
| 691 |
return [
|
| 692 |
datasets.SplitGenerator(
|
| 693 |
name=datasets.Split.TRAIN,
|
| 694 |
gen_kwargs={
|
| 695 |
+
"streaming": streaming,
|
| 696 |
+
"archive_iterator": archive_iterator,
|
| 697 |
+
"filepath": metadata_filepaths["train"],
|
| 698 |
"path_to_clips": path_to_clips,
|
| 699 |
},
|
| 700 |
),
|
| 701 |
datasets.SplitGenerator(
|
| 702 |
name=datasets.Split.TEST,
|
| 703 |
gen_kwargs={
|
| 704 |
+
"streaming": streaming,
|
| 705 |
+
"archive_iterator": archive_iterator,
|
| 706 |
+
"filepath": metadata_filepaths["test"],
|
| 707 |
"path_to_clips": path_to_clips,
|
| 708 |
},
|
| 709 |
),
|
| 710 |
datasets.SplitGenerator(
|
| 711 |
name=datasets.Split.VALIDATION,
|
| 712 |
gen_kwargs={
|
| 713 |
+
"streaming": streaming,
|
| 714 |
+
"archive_iterator": archive_iterator,
|
| 715 |
+
"filepath": metadata_filepaths["dev"],
|
| 716 |
"path_to_clips": path_to_clips,
|
| 717 |
},
|
| 718 |
),
|
| 719 |
datasets.SplitGenerator(
|
| 720 |
name="other",
|
| 721 |
gen_kwargs={
|
| 722 |
+
"streaming": streaming,
|
| 723 |
+
"archive_iterator": archive_iterator,
|
| 724 |
+
"filepath": metadata_filepaths["other"],
|
| 725 |
"path_to_clips": path_to_clips,
|
| 726 |
},
|
| 727 |
),
|
| 728 |
datasets.SplitGenerator(
|
| 729 |
name="validated",
|
| 730 |
gen_kwargs={
|
| 731 |
+
"streaming": streaming,
|
| 732 |
+
"archive_iterator": archive_iterator,
|
| 733 |
+
"filepath": metadata_filepaths["validated"],
|
| 734 |
"path_to_clips": path_to_clips,
|
| 735 |
},
|
| 736 |
),
|
| 737 |
datasets.SplitGenerator(
|
| 738 |
name="invalidated",
|
| 739 |
gen_kwargs={
|
| 740 |
+
"streaming": streaming,
|
| 741 |
+
"archive_iterator": archive_iterator,
|
| 742 |
+
"filepath": metadata_filepaths["invalidated"],
|
| 743 |
"path_to_clips": path_to_clips,
|
| 744 |
},
|
| 745 |
),
|
| 746 |
]
|
| 747 |
|
| 748 |
+
def _generate_examples(self, streaming, archive_iterator, filepath, path_to_clips):
|
| 749 |
"""Yields examples."""
|
| 750 |
+
if streaming:
|
| 751 |
+
yield from self._generate_examples_streaming(archive_iterator, filepath, path_to_clips)
|
| 752 |
+
else:
|
| 753 |
+
yield from self._generate_examples_non_streaming(filepath, path_to_clips)
|
| 754 |
+
|
| 755 |
+
def _generate_examples_non_streaming(self, filepath, path_to_clips):
|
| 756 |
+
|
| 757 |
+
data_fields = list(self._info().features.keys())
|
| 758 |
+
|
| 759 |
+
# audio is not a header of the csv files
|
| 760 |
+
data_fields.remove("audio")
|
| 761 |
+
path_idx = data_fields.index("path")
|
| 762 |
+
|
| 763 |
+
with open(filepath, encoding="utf-8") as f:
|
| 764 |
+
lines = f.readlines()
|
| 765 |
+
headline = lines[0]
|
| 766 |
+
|
| 767 |
+
column_names = headline.strip().split("\t")
|
| 768 |
+
assert (
|
| 769 |
+
column_names == data_fields
|
| 770 |
+
), f"The file should have {data_fields} as column names, but has {column_names}"
|
| 771 |
+
|
| 772 |
+
for id_, line in enumerate(lines[1:]):
|
| 773 |
+
field_values = line.strip().split("\t")
|
| 774 |
+
|
| 775 |
+
# set absolute path for mp3 audio file
|
| 776 |
+
field_values[path_idx] = os.path.join(path_to_clips, field_values[path_idx])
|
| 777 |
+
|
| 778 |
+
# if data is incomplete, fill with empty values
|
| 779 |
+
if len(field_values) < len(data_fields):
|
| 780 |
+
field_values += (len(data_fields) - len(field_values)) * ["''"]
|
| 781 |
+
|
| 782 |
+
result = {key: value for key, value in zip(data_fields, field_values)}
|
| 783 |
+
|
| 784 |
+
# set audio feature
|
| 785 |
+
result["audio"] = field_values[path_idx]
|
| 786 |
+
|
| 787 |
+
yield id_, result
|
| 788 |
+
|
| 789 |
+
def _generate_examples_streaming(self, archive_iterator, filepath, path_to_clips):
|
| 790 |
+
"""Yields examples in streaming mode."""
|
| 791 |
data_fields = list(self._info().features.keys())
|
| 792 |
|
| 793 |
# audio is not a header of the csv files
|
|
|
|
| 796 |
|
| 797 |
all_field_values = {}
|
| 798 |
metadata_found = False
|
| 799 |
+
for path, f in archive_iterator:
|
| 800 |
if path == filepath:
|
| 801 |
metadata_found = True
|
| 802 |
lines = f.readlines()
|
|
|
|
| 826 |
|
| 827 |
# set audio feature
|
| 828 |
result["audio"] = {"path": path, "bytes": f.read()}
|
| 829 |
+
# set path to None since the path doesn't exist locally in streaming mode
|
| 830 |
+
result["path"] = None
|
| 831 |
|
| 832 |
yield path, result
|