--- license: mit dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: task1 num_bytes: 100788 num_examples: 250 - name: task2 num_bytes: 42363 num_examples: 250 - name: task3 num_bytes: 67642 num_examples: 250 - name: task4 num_bytes: 146014 num_examples: 250 - name: task5 num_bytes: 22327 num_examples: 100 - name: task6 num_bytes: 27509 num_examples: 100 download_size: 55342 dataset_size: 406643 configs: - config_name: default data_files: - split: task1 path: data/task1-* - split: task2 path: data/task2-* - split: task3 path: data/task3-* - split: task4 path: data/task4-* - split: task5 path: data/task5-* - split: task6 path: data/task6-* --- # TutorQA Benchmark This dataset is part of the benchmark introduced in the paper [Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education](https://arxiv.org/pdf/2407.10794v1). We also release more data in our [GitHub page](https://github.com/IreneZihuiLi/Graphusion/tree/main). It contains 6 tasks designed for evaluating various aspects of reasoning, graph understanding, and language generation. ## Dataset Structure Each task is a separate split: - `task1`: Relation Judgment - `task2`: Prerequisite Prediction - `task3`: Path Searching - `task4`: Subgraph Completion - `task5`: Clustering - `task6`: Idea Hamster (no answers, open ended) | Split | Fields | |:-------|:----------------------------| | task1 | `question`, `answer` | | task2 | `question`, `answer` | | task3 | `question`, `answer` | | task4 | `question`, `answer` | | task5 | `question`, `answer` | | task6 | `question` | ## Usage Example ```python from datasets import load_dataset dataset = load_dataset("li-lab/tutorqa") # Access individual tasks task1 = dataset["task1"] task6 = dataset["task6"] ``` ## Citation ```bibtex @inproceedings{yang2025graphusion, title={Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective}, author={Yang, Rui and Yang, Boming and Feng, Aosong and Ouyang, Sixun and Blum, Moritz and She, Tianwei and Jiang, Yuang and Lecue, Freddy and Lu, Jinghui and Li, Irene}, booktitle={Proceedings of the NLP4KGC Workshop at The Web Conference 2025 (WWW'25)}, year={2025}, url={https://arxiv.org/abs/2410.17600} }