Datasets:

Modalities:
Text
Formats:
json
Languages:
Portuguese
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
hugo commited on
Commit
61ab8e6
·
verified ·
1 Parent(s): 150fdcb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
  license: apache-2.0
3
  configs:
4
- - config_name: '2022'
5
- data_files: 2022.jsonl
6
- - config_name: '2023'
7
- data_files: 2023.jsonl
8
  - config_name: '2024'
9
  data_files: 2024.jsonl
10
  default: true
 
 
 
 
11
  dataset_info:
12
  features:
13
  - name: id
@@ -38,7 +38,7 @@ size_categories:
38
  - n<1K
39
  ---
40
 
41
- The enem 2022 and enem 2023 datasets encompass all multiple-choice questions from the last two editions of the [Exame Nacional do Ensino Médio (ENEM)](https://www.gov.br/inep/pt-br/areas-de-atuacao/avaliacao-e-exames-educacionais/enem), the main standardized entrance examination adopted by Brazilian universities. The datasets have been created to allow the evaluation of both textual-only and textual-visual language models. To evaluate textual-only models, we incorporated into the datasets the textual descriptions of the images that appear in the questions' statements from the orange ENEM exam booklet, a particular booklet that offers accessibility to people with visual impairments.
42
 
43
  A repository containing the essential code for utilizing this dataset is accessible [here](https://github.com/piresramon/gpt-4-enem).
44
 
 
1
  ---
2
  license: apache-2.0
3
  configs:
 
 
 
 
4
  - config_name: '2024'
5
  data_files: 2024.jsonl
6
  default: true
7
+ - config_name: '2023'
8
+ data_files: 2023.jsonl
9
+ - config_name: '2022'
10
+ data_files: 2022.jsonl
11
  dataset_info:
12
  features:
13
  - name: id
 
38
  - n<1K
39
  ---
40
 
41
+ The ENEM 2022, 2023 and 2024 datasets encompass all multiple-choice questions from the last two editions of the [Exame Nacional do Ensino Médio (ENEM)](https://www.gov.br/inep/pt-br/areas-de-atuacao/avaliacao-e-exames-educacionais/enem), the main standardized entrance examination adopted by Brazilian universities. The datasets have been created to allow the evaluation of both textual-only and textual-visual language models. To evaluate textual-only models, we incorporated into the datasets the textual descriptions of the images that appear in the questions' statements from the orange ENEM exam booklet, a particular booklet that offers accessibility to people with visual impairments.
42
 
43
  A repository containing the essential code for utilizing this dataset is accessible [here](https://github.com/piresramon/gpt-4-enem).
44