massomo commited on
Commit
6e92c4a
·
verified ·
1 Parent(s): f223fb4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +106 -123
README.md CHANGED
@@ -1,168 +1,151 @@
1
  ---
2
  license: cc-by-4.0
3
  task_categories:
4
- - tabular-classification
5
- - tabular-regression
6
  language:
7
- - en
8
  tags:
9
- - healthcare
10
- - demographics
11
- - geography
12
- - australia
13
- - census
14
- - health-data
15
- - socioeconomic
16
- - geospatial
17
  size_categories:
18
- - 1K<n<10K
19
- dataset_info:
20
- features:
21
- - name: sa2_code_2021
22
- dtype: string
23
- - name: sa2_name_2021
24
- dtype: string
25
- - name: total_population_2021
26
- dtype: int64
27
- - name: median_age_2021
28
- dtype: float64
29
- config_name: default
30
- data_files:
31
- - split: train
32
- path: "ahgd_master_dataset_real.parquet"
33
- download_size: 133642
34
- dataset_size: 2472
35
  ---
36
 
37
- # Australian Healthcare Geographic Database (AHGD)
38
 
39
- [![License: CC BY 4.0](https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)
40
- [![Dataset Size](https://img.shields.io/badge/Dataset-2,472%20records-blue.svg)](https://huggingface.co/datasets/massomo/ahgd)
41
 
42
- ## Overview
43
 
44
- The Australian Healthcare Geographic Database (AHGD) is a comprehensive, production-ready dataset that integrates demographic, socioeconomic, health, and environmental data for all 2,472 Statistical Area Level 2 (SA2) regions across Australia. This dataset provides researchers, policymakers, and data scientists with a unified view of Australian communities at a granular geographic level.
45
 
46
- ## Dataset Description
 
 
 
 
47
 
48
- This dataset combines data from multiple authoritative Australian government sources:
49
 
50
- - **Australian Bureau of Statistics (ABS)**: 2021 Census demographic data
51
- - **Australian Institute of Health and Welfare (AIHW)**: Health indicators and outcomes
52
- - **Bureau of Meteorology (BOM)**: Climate and environmental data
53
- - **Department of Health**: Healthcare service utilization data
 
 
54
 
55
- ### Key Features
56
 
57
- - **Complete Coverage**: All 2,472 SA2 regions across Australia
58
- - **Multi-dimensional**: Demographics, health, environment, and socioeconomic indicators
59
- - **Production Quality**: Real government data sources with validation pipelines
60
- - **Research Ready**: Cleaned, standardized, and integrated for immediate analysis
61
 
62
- ## Data Fields
63
 
64
- The dataset contains the following key categories of information:
65
 
66
- ### Geographic Identifiers
67
- - `sa2_code_2021`: Unique SA2 identifier (2021 boundaries)
68
- - `sa2_name_2021`: SA2 region name
69
- - `state_code_2021`: State/territory code
70
- - `gcc_code_2021`: Greater Capital City Statistical Area code
71
 
72
- ### Demographic Data
73
- - `total_population_2021`: Total population count
74
- - `median_age_2021`: Median age of residents
75
- - `indigenous_population_pct`: Percentage of Indigenous population
76
- - `overseas_born_pct`: Percentage born overseas
77
- - `unemployment_rate_2021`: Unemployment rate
78
 
79
- ### Socioeconomic Indicators
80
- - `median_household_income_weekly`: Median weekly household income
81
- - `seifa_advantage_disadvantage_score`: SEIFA disadvantage index
82
- - `education_university_pct`: Percentage with university education
83
 
84
- ### Health & Environmental
85
- - `healthcare_services_per_1000`: Healthcare services per 1000 residents
86
- - `air_quality_index_avg`: Average air quality index
87
- - `climate_zone`: Köppen climate classification
 
88
 
89
- ## Usage Example
90
 
91
- ```python
92
- import pandas as pd
93
 
94
- # Load the dataset
95
- df = pd.read_parquet('ahgd_master_dataset_real.parquet')
96
 
97
- # Basic exploration
98
- print(f"Dataset shape: {df.shape}")
99
- print(f"Columns: {df.columns.tolist()}")
100
- print(f"SA2 regions covered: {df['sa2_code_2021'].nunique()}")
101
 
102
- # Example analysis: Top 10 SA2s by population
103
- top_population = df.nlargest(10, 'total_population_2021')[
104
- ['sa2_name_2021', 'state_code_2021', 'total_population_2021']
105
- ]
106
- print("Top 10 most populous SA2 regions:")
107
- print(top_population)
108
- ```
109
 
110
- ## Data Sources & Methodology
111
 
112
- ### Primary Data Sources
113
- 1. **ABS 2021 Census DataPacks**: Comprehensive demographic data at SA2 level
114
- 2. **ASGS Digital Boundary Files**: Geographic boundaries and classifications
115
- 3. **AIHW Health Data**: Health outcomes and healthcare utilization
116
- 4. **BOM Climate Data**: Temperature, rainfall, and environmental indicators
117
 
118
- ### Data Processing Pipeline
119
- - Automated extraction from government APIs and data portals
120
- - Standardization using common geographic identifiers (SA2_CODE_2021)
121
- - Quality validation with statistical and business rule checks
122
- - Integration using spatial and temporal alignment procedures
123
 
124
- ## File Formats
 
 
125
 
126
- - **Parquet**: `ahgd_master_dataset_real.parquet` (optimized for analytics)
127
- - **CSV**: `ahgd_master_dataset_real.csv` (universal compatibility)
128
- - **Metadata**: `dataset_metadata.json` (schema and provenance information)
129
 
130
- ## Data Quality
131
 
132
- - **Completeness**: 100% geographic coverage of Australian SA2 regions
133
- - **Accuracy**: Validated against official ABS population totals
134
- - **Timeliness**: Based on most recent available data (2021 Census)
135
- - **Consistency**: Standardized field names and data types across sources
136
 
137
- ## Licensing & Attribution
138
 
139
- This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
 
 
 
 
140
 
141
- ### Required Citation
142
 
143
- ```
144
- Australian Healthcare Geographic Database (AHGD) v2.0.0 (2024).
145
- Integrated demographic, health, and environmental data for Australian SA2 regions.
146
- Dataset derived from Australian Bureau of Statistics, Australian Institute of Health and Welfare,
147
- and Bureau of Meteorology official data sources.
148
- ```
149
 
150
- ### Data Source Attribution
151
- - Australian Bureau of Statistics (ABS) © Commonwealth of Australia
152
- - Australian Institute of Health and Welfare (AIHW) © Commonwealth of Australia
153
- - Bureau of Meteorology (BOM) © Commonwealth of Australia
154
 
155
- ## Version Information
156
 
157
- - **Version**: 2.0.0
158
- - **Release Date**: June 2024
159
- - **Records**: 2,472 SA2 regions
160
- - **Reference Period**: 2021 (primary data year)
161
 
162
- ## Contact & Support
163
 
164
- For questions, issues, or suggestions regarding this dataset, please open an issue in the repository or contact the maintainers.
 
 
 
 
165
 
166
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
- *This dataset supports research into Australian healthcare accessibility, demographic patterns, and regional development planning.*
 
1
  ---
2
  license: cc-by-4.0
3
  task_categories:
4
+ - other
 
5
  language:
6
+ - en
7
  tags:
8
+ - australia
9
+ - health
10
+ - geography
11
+ - sa2
12
+ - demographics
13
+ - climate
14
+ pretty_name: Australian Health and Geographic Data (AHGD)
 
15
  size_categories:
16
+ - n<1K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
+ # Australian Health and Geographic Data (AHGD)
20
 
21
+ ## Dataset Description
 
22
 
23
+ The Australian Health and Geographic Data (AHGD) dataset provides comprehensive health, demographic, and environmental indicators at the Statistical Area Level 2 (SA2) geography across Australia. This dataset integrates multiple authoritative Australian data sources to enable health geography research, policy analysis, and machine learning applications.
24
 
25
+ ### Dataset Summary
26
 
27
+ - **Geographic Coverage**: Australian SA2 statistical areas
28
+ - **Temporal Coverage**: 2021 reference year
29
+ - **Data Sources**: Australian Institute of Health and Welfare (AIHW), Australian Bureau of Statistics (ABS), Bureau of Meteorology (BOM)
30
+ - **Total Records**: 12
31
+ - **Format Availability**: parquet, csv, json, geojson
32
 
33
+ ### Supported Tasks
34
 
35
+ - Health geography analysis
36
+ - Spatial epidemiology research
37
+ - Environmental health studies
38
+ - Social determinants of health research
39
+ - Machine learning for health prediction
40
+ - Policy impact assessment
41
 
42
+ ### Languages
43
 
44
+ English (Australian spelling and terminology)
 
 
 
45
 
46
+ ## Dataset Structure
47
 
48
+ ### Data Instances
49
 
50
+ Each record represents a Statistical Area Level 2 (SA2) with associated health, demographic, and environmental indicators.
 
 
 
 
51
 
52
+ ### Data Fields
 
 
 
 
 
53
 
54
+ Key data fields include:
 
 
 
55
 
56
+ - **Geographic identifiers**: SA2, SA3, SA4 codes and names
57
+ - **Health indicators**: Life expectancy, chronic disease prevalence, health service utilisation
58
+ - **Environmental data**: Temperature, rainfall, air quality measures
59
+ - **Socioeconomic indicators**: SEIFA indices, employment rates
60
+ - **Demographic characteristics**: Population, age structure, cultural diversity
61
 
62
+ ### Data Splits
63
 
64
+ This dataset does not have predefined train/validation/test splits as it represents cross-sectional geographic data.
 
65
 
66
+ ## Dataset Creation
 
67
 
68
+ ### Curation Rationale
 
 
 
69
 
70
+ This dataset was created to support health geography research and policy analysis in Australia by providing integrated, high-quality data at meaningful geographic scales.
 
 
 
 
 
 
71
 
72
+ ### Source Data
73
 
74
+ #### Initial Data Collection and Normalisation
 
 
 
 
75
 
76
+ Data is sourced from:
 
 
 
 
77
 
78
+ 1. **Australian Institute of Health and Welfare (AIHW)**: Health indicators and outcomes
79
+ 2. **Australian Bureau of Statistics (ABS)**: Geographic boundaries and demographic data
80
+ 3. **Bureau of Meteorology (BOM)**: Climate and environmental data
81
 
82
+ #### Who are the source language producers?
 
 
83
 
84
+ Australian government agencies producing official statistics and health data.
85
 
86
+ ### Annotations
 
 
 
87
 
88
+ #### Annotation process
89
 
90
+ Data undergoes comprehensive validation including:
91
+ - Geographic boundary verification
92
+ - Statistical outlier detection
93
+ - Data quality scoring
94
+ - Cross-source consistency checking
95
 
96
+ #### Who are the annotators?
97
 
98
+ Automated validation systems with expert review by health geography researchers.
 
 
 
 
 
99
 
100
+ ### Personal and Sensitive Information
 
 
 
101
 
102
+ This dataset contains only aggregated, de-identified data at the SA2 level. No individual-level information is included.
103
 
104
+ ## Considerations for Using the Data
 
 
 
105
 
106
+ ### Social Impact of Dataset
107
 
108
+ This dataset can support:
109
+ - Evidence-based health policy development
110
+ - Resource allocation decisions
111
+ - Health inequity identification
112
+ - Environmental health research
113
 
114
+ ### Discussion of Biases
115
+
116
+ Users should be aware of:
117
+ - Potential underrepresentation in remote areas
118
+ - Temporal lag between data collection and availability
119
+ - Varying data quality across geographic regions
120
+
121
+ ### Other Known Limitations
122
+
123
+ - Data currency varies by indicator
124
+ - Some regional areas may have suppressed values due to privacy requirements
125
+ - Climate data interpolation may introduce spatial uncertainty
126
+
127
+ ## Additional Information
128
+
129
+ ### Dataset Curators
130
+
131
+ Australian Health and Geographic Data (AHGD) Project Team
132
+
133
+ ### Licensing Information
134
+
135
+ Creative Commons Attribution 4.0 International (CC BY 4.0)
136
+
137
+ ### Citation Information
138
+
139
+ ```
140
+ @dataset{ahgd2024,
141
+ title={Australian Health and Geographic Data (AHGD)},
142
+ author={AHGD Project Team},
143
+ year={2024},
144
+ publisher={Hugging Face},
145
+ url={https://huggingface.co/datasets/ahgd/australian-health-geographic-data}
146
+ }
147
+ ```
148
+
149
+ ### Contributions
150
 
151
+ Thanks to the Australian Institute of Health and Welfare, Australian Bureau of Statistics, and Bureau of Meteorology for providing the underlying data sources.