# Australian Health and Geographic Data (AHGD) - R Example # # This example demonstrates how to load and analyse the AHGD dataset using R library(arrow) # For Parquet files library(readr) # For CSV files library(jsonlite) # For JSON files library(dplyr) # For data manipulation library(ggplot2) # For visualisation # Load dataset (Parquet recommended for performance) load_ahgd_data <- function(format = "parquet") { if (format == "parquet") { data <- arrow::read_parquet("ahgd_data.parquet") } else if (format == "csv") { data <- readr::read_csv("ahgd_data.csv") } else if (format == "json") { json_data <- jsonlite::fromJSON("ahgd_data.json") data <- as.data.frame(json_data$data) } else { stop("Unsupported format. Use 'parquet', 'csv', or 'json'") } return(data) } # Basic analysis analyse_ahgd <- function() { # Load data df <- load_ahgd_data("parquet") cat("Dataset dimensions:", dim(df), "\n") cat("Column names:", paste(names(df), collapse = ", "), "\n\n") # Summary statistics for numeric columns numeric_cols <- sapply(df, is.numeric) if (any(numeric_cols)) { cat("Summary statistics:\n") print(summary(df[, numeric_cols])) } # State-level health indicators if ("state_name" %in% names(df) && "life_expectancy_years" %in% names(df)) { state_summary <- df %>% group_by(state_name) %>% summarise( avg_life_expectancy = mean(life_expectancy_years, na.rm = TRUE), avg_smoking = mean(smoking_prevalence_percent, na.rm = TRUE), avg_obesity = mean(obesity_prevalence_percent, na.rm = TRUE), .groups = 'drop' ) cat("\nHealth indicators by state:\n") print(state_summary) } return(df) } # Create visualisations create_plots <- function(df) { # Life expectancy distribution p1 <- ggplot(df, aes(x = life_expectancy_years)) + geom_histogram(bins = 20, fill = "skyblue", alpha = 0.7) + labs(title = "Distribution of Life Expectancy", x = "Life Expectancy (Years)", y = "Count") + theme_minimal() # Smoking vs Life Expectancy if (all(c("smoking_prevalence_percent", "life_expectancy_years") %in% names(df))) { p2 <- ggplot(df, aes(x = smoking_prevalence_percent, y = life_expectancy_years)) + geom_point(alpha = 0.6, color = "darkblue") + geom_smooth(method = "lm", se = TRUE, color = "red") + labs(title = "Smoking Prevalence vs Life Expectancy", x = "Smoking Prevalence (%)", y = "Life Expectancy (Years)") + theme_minimal() # Save plots ggsave("life_expectancy_distribution.png", p1, width = 8, height = 6, dpi = 300) ggsave("smoking_vs_life_expectancy.png", p2, width = 8, height = 6, dpi = 300) } } # Run analysis main <- function() { cat("Loading Australian Health and Geographic Data...\n") data <- analyse_ahgd() cat("Creating visualisations...\n") create_plots(data) cat("Analysis complete!\n") } # Execute if run directly if (sys.nframe() == 0) { main() }