""" Example: Basic analysis of Australian Health and Geographic Data This example demonstrates how to load and analyse the AHGD dataset using Python and common data science libraries. """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns def load_dataset(format_type='parquet'): """Load AHGD dataset in specified format.""" if format_type == 'parquet': return pd.read_parquet('ahgd_data.parquet') elif format_type == 'csv': return pd.read_csv('ahgd_data.csv') elif format_type == 'json': import json with open('ahgd_data.json', 'r') as f: data = json.load(f) return pd.DataFrame(data['data']) else: raise ValueError(f"Unsupported format: {format_type}") def basic_analysis(): """Perform basic statistical analysis.""" # Load data df = load_dataset('parquet') print(f"Dataset shape: {df.shape}") print(f"Columns: {list(df.columns)}") # Summary statistics numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns print("\nSummary Statistics:") print(df[numeric_cols].describe()) # State-level aggregations if 'state_name' in df.columns and 'life_expectancy_years' in df.columns: state_health = df.groupby('state_name').agg({ 'life_expectancy_years': 'mean', 'smoking_prevalence_percent': 'mean', 'obesity_prevalence_percent': 'mean' }).round(2) print("\nHealth Indicators by State:") print(state_health) return df def create_visualisations(df): """Create basic visualisations.""" plt.style.use('seaborn-v0_8') # Life expectancy distribution plt.figure(figsize=(10, 6)) plt.subplot(2, 2, 1) df['life_expectancy_years'].hist(bins=20, alpha=0.7) plt.title('Distribution of Life Expectancy') plt.xlabel('Years') # Health indicators correlation if all(col in df.columns for col in ['life_expectancy_years', 'smoking_prevalence_percent']): plt.subplot(2, 2, 2) plt.scatter(df['smoking_prevalence_percent'], df['life_expectancy_years'], alpha=0.6) plt.xlabel('Smoking Prevalence (%)') plt.ylabel('Life Expectancy (Years)') plt.title('Smoking vs Life Expectancy') plt.tight_layout() plt.savefig('ahgd_analysis.png', dpi=300, bbox_inches='tight') plt.show() if __name__ == "__main__": # Run basic analysis data = basic_analysis() # Create visualisations create_visualisations(data) print("\nAnalysis complete! Check ahgd_analysis.png for visualisations.")