Datasets:
				
			
			
	
			
			
	
		Tasks:
	
	
	
	
	Image-Text-to-Text
	
	
	Formats:
	
	
	
		
	
	parquet
	
	
	Languages:
	
	
	
		
	
	English
	
	
	Size:
	
	
	
	
	10K - 100K
	
	
	ArXiv:
	
	
	
	
	
	
	
	
Improve dataset card: Update task category, add tags, and add sample usage (#3)
Browse files- Improve dataset card: Update task category, add tags, and add sample usage (598fd6c26d7134f4d59036b601a372954449a038)
Co-authored-by: Niels Rogge <[email protected]>
    	
        README.md
    CHANGED
    
    | @@ -1,4 +1,17 @@ | |
| 1 | 
             
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2 | 
             
            dataset_info:
         | 
| 3 | 
             
              features:
         | 
| 4 | 
             
              - name: shape
         | 
| @@ -40,8 +53,6 @@ configs: | |
| 40 | 
             
                path: data/heptagons_with_visual_cues-*
         | 
| 41 | 
             
              - split: arrow_on_plus_with_visual_cues
         | 
| 42 | 
             
                path: data/arrow_on_plus_with_visual_cues-*
         | 
| 43 | 
            -
            task_categories:
         | 
| 44 | 
            -
            - image-classification
         | 
| 45 | 
             
            library_name:
         | 
| 46 | 
             
            - pytorch
         | 
| 47 | 
             
            ---
         | 
| @@ -56,6 +67,19 @@ This dataset is part of the work **"Forgotten Polygons: Multimodal Large Languag | |
| 56 |  | 
| 57 | 
             
            This dataset is designed to evaluate the shape understanding capabilities of Multimodal Large Language Models (MLLMs).
         | 
| 58 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 59 | 
             
            ## Dataset Splits
         | 
| 60 |  | 
| 61 | 
             
            Each split corresponds to a different reasoning task and shape identification challenge.
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            task_categories:
         | 
| 3 | 
            +
            - image-text-to-text
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - multimodal
         | 
| 6 | 
            +
            - mllm
         | 
| 7 | 
            +
            - geometric-reasoning
         | 
| 8 | 
            +
            - visual-question-answering
         | 
| 9 | 
            +
            - shape-recognition
         | 
| 10 | 
            +
            - chain-of-thought
         | 
| 11 | 
            +
            - mathematics
         | 
| 12 | 
            +
            - reasoning
         | 
| 13 | 
            +
            language:
         | 
| 14 | 
            +
            - en
         | 
| 15 | 
             
            dataset_info:
         | 
| 16 | 
             
              features:
         | 
| 17 | 
             
              - name: shape
         | 
|  | |
| 53 | 
             
                path: data/heptagons_with_visual_cues-*
         | 
| 54 | 
             
              - split: arrow_on_plus_with_visual_cues
         | 
| 55 | 
             
                path: data/arrow_on_plus_with_visual_cues-*
         | 
|  | |
|  | |
| 56 | 
             
            library_name:
         | 
| 57 | 
             
            - pytorch
         | 
| 58 | 
             
            ---
         | 
|  | |
| 67 |  | 
| 68 | 
             
            This dataset is designed to evaluate the shape understanding capabilities of Multimodal Large Language Models (MLLMs).
         | 
| 69 |  | 
| 70 | 
            +
            ## Sample Usage
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            This dataset is designed to be used with the evaluation code provided in the [GitHub Repository](https://github.com/rsinghlab/Shape-Blind/tree/main). To evaluate MLLMs on various tasks using this dataset, follow the instructions in the `evaluation` folder of the repository.
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            For example, to run a shape identification task using LLaVA-1.5:
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ```bash
         | 
| 77 | 
            +
            # Navigate to the 'evaluation' folder in the cloned GitHub repository
         | 
| 78 | 
            +
            cd Shape-Blind/evaluation
         | 
| 79 | 
            +
            # Run the evaluation script
         | 
| 80 | 
            +
            python3 evaluate_MLLMs.py --model_version llava-1.5 --task shape_id --dataset_size full
         | 
| 81 | 
            +
            ```
         | 
| 82 | 
            +
             | 
| 83 | 
             
            ## Dataset Splits
         | 
| 84 |  | 
| 85 | 
             
            Each split corresponds to a different reasoning task and shape identification challenge.
         | 
