Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
yljblues commited on
Commit
5dfade0
·
verified ·
1 Parent(s): c950799

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -117,3 +117,85 @@ dataset_info:
117
  download_size: 305275
118
  dataset_size: 2468355
119
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  download_size: 305275
118
  dataset_size: 2468355
119
  ---
120
+
121
+
122
+ # MARBLE: A Hard Benchmark for Multimodal Spatial Reasoning and Planning
123
+
124
+ [**🌐 Homepage**](https://marble-benchmark.github.io) | [**📖 Paper**](https://arxiv.org/abs/2506.22992) | [**🤗 Dataset**](https://huggingface.co/datasets/mrble/MARBLE) | [**🔗 Code**](https://github.com/eth-medical-ai-lab/multimodal-reasoning-bench)
125
+
126
+ ## Introduction
127
+ MARBLE is a challenging multimodal reasoning benchmark designed to scrutinize multimodal language models (MLLMs) in their ability to carefully reason step-by-step through complex multimodal problems and environments. MARBLE is composed of two highly challenging tasks, M-Portal and M-Cube, that require the crafting and understanding of multistep plans leveraging spatial, visual, and physical constraints. We find that current MLLMs perform poorly on MARBLE—all the 12 advanced models obtain near-random performance on M-Portal and 0\% accuracy on M-Cube. Only in simplified subtasks some models outperform the random baseline, indicating that complex reasoning is still a challenge for existing MLLMs. Moreover, we show that perception remains a bottleneck, where MLLMs occasionally fail to extract information from the visual inputs. By shedding a light on the limitations of MLLMs, we hope that MARBLE will spur the development of the next generation of models with the ability to reason and plan across many, multimodal reasoning steps.
128
+
129
+ ![Alt text](overview.png)
130
+
131
+ ## Dataset Details
132
+ The benchmark consists of two datasets M-Portal and M-CUBE, each also contains 2 subtasks respectively (`portal_binary` and `portal_blanks` for M-PORTAL and `cube` and `cube_easy` for M-CUBE). Besides, M-CUBE also contains a simple perception tasks `cube_perception`.
133
+
134
+ - M-PORTAL: multi-step spatial-planning puzzles modelled on levels from Portal 2.
135
+
136
+ - `map_name`: Portal 2 map name.
137
+ - `images`: images for each map ([images.zip](https://huggingface.co/datasets/mrble/MARBLE/blob/main/images.zip)).
138
+ - `system_prompt` and `user_prompt`: instruction of the problem.
139
+ - `answer`: solution.
140
+
141
+ - M-CUBE: 3D Cube assemblies from six jigsaw pieces, inspired by Happy Cube puzzles.
142
+
143
+ - `image`: image of 6 jigsaw pieces.
144
+ - `face_arrays`: 6 jigsaw pieces converted to binary arrays (0=gap, 1=bump).
145
+ - `question`: instruction of the Happy Cube Puzzle.
146
+ - `reference_solution`: one of the valid solutions.
147
+
148
+ ## Evaluation
149
+ Please refer to [**🔗 Code**](https://github.com/eth-medical-ai-lab/multimodal-reasoning-bench)
150
+
151
+ ## Overall Results
152
+ Performance on M-PORTAL:
153
+ | Model | Plan-correctness (F1 %) | Fill-the-blanks (Acc %) |
154
+ | ------------------ | ----------------------- | ----------------------- |
155
+ | GPT-o3 | 6.6 | 17.6 |
156
+ | Gemini-2.5-pro | 4.7 | 16.1 |
157
+ | DeepSeek-R1-0528\* | 0.0 | 8.4 |
158
+ | Claude-3.7-Sonnet | 6.3 | 6.8 |
159
+ | DeepSeek-R1\* | 6.1 | 5.5 |
160
+ | Seed1.5-VL | 7.6 | 3.5 |
161
+ | GPT-o4-mini | 0.0 | 3.1 |
162
+ | GPT-4o | 6.5 | 0.4 |
163
+ | Llama-4-Scout | 6.5 | 0.2 |
164
+ | Qwen2.5-VL-72B | 6.6 | 0.2 |
165
+ | InternVL3-78B | 6.4 | 0.0 |
166
+ | Qwen3-235B-A22B\* | 0.0 | 0.0 |
167
+ | *Random* | *6.1* | *3e-3* |
168
+
169
+ Performance on M-CUBE:
170
+ | Model | CUBE (Acc %) | CUBE-easy (Acc %) |
171
+ | ------------------ | ------------ | ----------------- |
172
+ | GPT-o3 | 0.0 | 72.0 |
173
+ | GPT-o4-mini | 0.0 | 16.0 |
174
+ | DeepSeek-R1\* | 0.0 | 14.0 |
175
+ | Gemini-2.5-pro | 0.0 | 11.0 |
176
+ | DeepSeek-R1-0528\* | 0.0 | 8.0 |
177
+ | Claude-3.7-Sonnet | 0.0 | 7.4 |
178
+ | InternVL3-78B | 0.0 | 2.8 |
179
+ | Seed1.5-VL | 0.0 | 2.0 |
180
+ | GPT-4o | 0.0 | 2.0 |
181
+ | Qwen2.5-VL-72B | 0.0 | 2.0 |
182
+ | Llama-4-Scout | 0.0 | 1.6 |
183
+ | Qwen3-235B-A22B\* | 0.0 | 0.3 |
184
+ | *Random* | *1e-5* | *3.1* |
185
+
186
+
187
+
188
+ ## Contact
189
+ - Yulun Jiang: [email protected]
190
+
191
+ ## BibTex
192
+
193
+ ```bibtex
194
+ @article{jiang2025marble,
195
+ title={MARBLE: A Hard Benchmark for Multimodal Spatial Reasoning and Planning},
196
+ author={Jiang, Yulun and Chai, Yekun and Brbi'c, Maria and Moor, Michael},
197
+ journal={arXiv preprint arXiv:2506.22992},
198
+ year={2025},
199
+ url={https://arxiv.org/abs/2506.22992}
200
+ }
201
+ ```