mrmrx commited on
Commit
a562c06
·
verified ·
1 Parent(s): 072d33a

Upload README_0013_ribfrac.md

Browse files
Files changed (1) hide show
  1. 0013_ribfrac/README_0013_ribfrac.md +57 -0
0013_ribfrac/README_0013_ribfrac.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RibFrac Challenge Dataset
2
+
3
+ ## License
4
+ **CC BY-NC 4.0**
5
+ [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/)
6
+
7
+ ## Citation
8
+ Paper BibTeX:
9
+
10
+ ```bibtex
11
+ @article{ribfracchallenge2025,
12
+ title={Deep Rib Fracture Instance Segmentation and Classification from CT on the RibFrac Challenge},
13
+ author={Yang, Jiancheng and Shi, Rui and Jin, Liang and Huang, Xiaoyang and Kuang, Kaiming and Wei, Donglai and Gu, Shixuan and Liu, Jianying and Liu, Pengfei and Chai, Zhizhong and Xiao, Yongjie and Chen, Hao and Xu, Liming and Du, Bang and Yan, Xiangyi and Tang, Hao and Alessio, Adam and Holste, Gregory and Zhang, Jiapeng and Wang, Xiaoming and He, Jianye and Che, Lixuan and Pfister, Hanspeter and Li, Ming and Ni, Bingbing},
14
+ journal={IEEE Transactions on Medical Imaging},
15
+ year={2025}
16
+ }
17
+ ```
18
+
19
+ Paper BibTeX:
20
+
21
+ ```bibtex
22
+ @article{ribfracclinical2020,
23
+ title={Deep-Learning-Assisted Detection and Segmentation of Rib Fractures from CT Scans: Development and Validation of FracNet},
24
+ author={Jin, Liang and Yang, Jiancheng and Kuang, Kaiming and Ni, Bingbing and Gao, Yiyi and Sun, Yingli and Gao, Pan and Ma, Weiling and Tan, Mingyu and Kang, Hui and Chen, Jiajun and Li, Ming},
25
+ journal={eBioMedicine},
26
+ year={2020},
27
+ publisher={Elsevier}
28
+ }
29
+ ```
30
+
31
+
32
+ ## Dataset description
33
+ The RibFrac Challenge provides a large-scale benchmark for automated rib fracture detection and classification. It contains around 5,000 annotated rib fractures from 660 CT scans, with pixel-level fracture masks and four-class fracture type labels, supporting both detection and classification research.
34
+
35
+ **Challenge homepage**: https://ribfrac.grand-challenge.org/overview/
36
+
37
+ **Number of CT volumes**: 660
38
+
39
+ **Contrast**: Multi-detector CT scanners (16 cm wide coverage and dual-source CT)
40
+
41
+ **CT body coverage**: Chest-abdomen
42
+
43
+ **Does the dataset include any ground truth annotations?**: Only labels for classification
44
+
45
+ **Original GT annotation targets**: Only rib fracture regions and types
46
+
47
+ **Number of annotated CT volumes**: -
48
+
49
+ **Annotator**: Human experts with deep learning assistance (human-in-the-loop)
50
+
51
+ **Acquisition centers**: Huadong Hospital, affiliated with Fudan University in Shanghai, China
52
+
53
+ **Pathology/Disease**: Traumatic rib fractures, with various fracture types
54
+
55
+ **Original dataset download link**: https://ribfrac.grand-challenge.org/dataset/
56
+
57
+ **Original dataset format**: nifti