mrmrx commited on
Commit
be785ea
·
verified ·
1 Parent(s): 3b45f62

Upload README_0008_ctorg.md

Browse files
Files changed (1) hide show
  1. 0008_ctorg/README_0008_ctorg.md +52 -0
0008_ctorg/README_0008_ctorg.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CT-ORG: Multiple Organ Segmentation in CT
2
+
3
+ ## License
4
+ **CC BY 3.0**
5
+ [Creative Commons Attribution 3.0 License](https://creativecommons.org/licenses/by/3.0/)
6
+
7
+ ## Citation
8
+ Paper BibTeX:
9
+ ```bibtex
10
+ @article{rister2020ct,
11
+ title={CT-ORG, a new dataset for multiple organ segmentation in computed tomography},
12
+ author={Rister, Blaine and Yi, Darvin and Shivakumar, Kaushik and Nobashi, Tomomi and Rubin, Daniel L},
13
+ journal={Scientific Data},
14
+ volume={7},
15
+ number={1},
16
+ pages={381},
17
+ year={2020},
18
+ publisher={Nature Publishing Group UK London}
19
+ }
20
+ ```
21
+
22
+ Dataset:
23
+
24
+ ```bibtex
25
+ Rister, B., Shivakumar, K., Nobashi, T., & Rubin, D. L. (2019). CT-ORG: A Dataset of CT Volumes With Multiple Organ Segmentations (Version 1) [dataset]. The Cancer Imaging Archive. DOI: 10.7937/tcia.2019.tt7f4v7o
26
+ ```
27
+
28
+
29
+ ## Dataset description
30
+ CT-ORG contains 140 CT scans from diverse sources, each with 3D segmentations of five organs, and brain labels in some cases. The dataset covers a wide range of imaging conditions and includes both benign and malignant liver lesions, as well as metastatic disease in bones and lungs, providing a challenging benchmark for multi-class organ segmentation.
31
+
32
+ **Number of CT volumes**: 140
33
+
34
+ **Contrast**: Both contrast-enhanced and non-contrast; includes PET-CT derived scans
35
+
36
+ **CT body coverage**: Abdominal and full-body
37
+
38
+ **Does the dataset include any ground truth annotations?**: Yes
39
+
40
+ **Original GT annotation targets**: Liver, urinary bladder, lungs, kidneys, bone
41
+
42
+ **Number of annotated CT volumes**: 140
43
+
44
+ **Annotator**: Human (lungs and bones partly from morphological algorithms)
45
+
46
+ **Acquisition centers**: Multiple global institutions, Ludwig Maxmilian University of Munich, Radboud University Medical Center of Nijmegen, Poly-technique & CHUM Research Center Montreal, Tel Aviv University, Sheba Medical Center, IRCAD Institute Strasbourg and Hebrew University of Jerusalem. The PET-CT images all derive from Stanford Healthcare.
47
+
48
+ **Pathology/Disease**: Benign and malignant liver lesions, metastatic disease in bones and lungs
49
+
50
+ **Original dataset download link**: https://www.cancerimagingarchive.net/collection/ct-org/
51
+
52
+ **Original dataset format**: nifti