File size: 3,480 Bytes
716c4f7
 
 
 
2a4f091
 
17ee3e8
 
e8db8c2
 
 
 
 
 
 
17ee3e8
e37cbb4
2a4f091
 
e37cbb4
17ee3e8
 
 
 
 
 
2a4f091
17ee3e8
 
 
 
 
 
 
2a4f091
17ee3e8
 
 
 
1387315
17ee3e8
2a4f091
17ee3e8
 
 
 
 
 
 
 
 
70a28f1
17ee3e8
 
 
 
fffe437
17ee3e8
 
880167c
17ee3e8
fffe437
 
 
 
2a4f091
fffe437
 
 
 
b2fb607
 
5d03d17
2a4f091
 
 
 
 
 
 
 
 
 
 
 
5d03d17
2a4f091
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: cc-by-nc-nd-4.0
size_categories:
- 100K<n<1M
task_categories:
- image-to-image
---

# PhysicsGen: Can Generative Models Learn from Images to Predict Complex Physical Relations?

## Paper

Accepted at IEEE/CVF Conference on Computer Vision and Pattern Recognition ([CVPR](https://cvpr.thecvf.com/)) 2025.

Preprint is available here: [https://arxiv.org/abs/2503.05333](https://arxiv.org/abs/2503.05333)

Website: [https://www.physics-gen.org/](https://www.physics-gen.org/)
Github: [https://github.com/physicsgen/physicsgen](https://github.com/physicsgen/physicsgen)


## Overview

**PhysicsGen** is a synthetic dataset collection generated via simulation for physical guided generative modeling, focusing on tasks such as sound propagation. The dataset includes multiple variants that simulate different physical phenomena, each accompanied by corresponding metadata and images.

### Variants

- **Urban Sound Propagation:** [`sound_baseline`, `sound_reflection`, `sound_diffraction`, `sound_combined`]

  Each sound example includes:
  - Geographic coordinates: `lat`, `long`
  - Sound intensity: `db`
  - Images: `soundmap`, `osm`, `soundmap_512`
  - Additional metadata: `temperature`, `humidity`, `yaw`, `sample_id`

- **Lens Distortion:** [`lens_p1`, `lens_p2`]

  Each lens example includes:
  - Calibration parameters: `fx`, `k1`, `k2`, `k3`, `p1`, `p2`, `cx`
  - Label file path: `label_path`
  - Note: The script for applying the distortion to the CelebA Dataset is located [here](https://github.com/physicsgen/physicsgen/blob/main/eval_scripts/hf_apply_lens_distortion.py).

- **Dynamics of rolling and bouncing movements:** [`ball_roll`, `ball_bounce`]

  Each ball example includes:
  - Metadata: `ImgName`, `StartHeight`, `GroundIncli`, `InputTime`, `TargetTime`
  - Images: `input_image`, `target_image`

Data is divided into `train`, `test`, and `eval` splits. For efficient storage and faster uploads, the data is converted and stored as Parquet files with image data stored as binary blobs.

## Usage

You can load and use the dataset with the Hugging Face `datasets` library. For example, to load the **sound_combined** variant:

```python
from datasets import load_dataset

dataset = load_dataset("mspitzna/physicsgen", name="sound_combined", trust_remote_code=True)

# Access a sample from the training split.
sample = dataset["train"][0]

input_img = sample["osm"]
target_img = sample["soundmap_512"]

# plot Input vs Target Image for a single sample
import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
ax1.imshow(input_img)
ax2.imshow(target_img)
plt.show()
```

![image info](figures/example_sample.png)

## Results (Summary - see paper for full details)

PhysicsGen includes baseline results for several models across the three tasks.  See the paper for a complete evaluation.

## License
This dataset is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International](https://creativecommons.org/licenses/by-nc-nd/4.0/)

## Funding Acknowledgement
We express our gratitude for the financial support provided by the German Federal Ministry of Education and Research (BMBF). This project is part of the "Forschung an Fachhochschulen in Kooperation mit Unternehmen (FH-Kooperativ)" program, within the joint project [KI-Bohrer](https://www.ki-bohrer.de/), and is funded under the grant number 13FH525KX1.

<p align="center">
  <img src="figures/bmbf_logo.png" alt="BMBF-Logo">
</p>