import os import csv from PIL import Image import datasets # Define configurations for each flavor. BUILDER_CONFIGS = [ datasets.BuilderConfig( name="sound_baseline", description="Physical dataset: baseline variant", data_dir="./physicsgen/urban_sound_25k_baseline" ), datasets.BuilderConfig( name="sound_reflection", description="Physical dataset: reflection variant", data_dir="./physicsgen/urban_sound_25k_reflection" ), datasets.BuilderConfig( name="sound_diffraction", description="Physical dataset: reflection variant", data_dir="./physicsgen/urban_sound_25k_diffraction" ), datasets.BuilderConfig( name="sound_combined", description="Physical dataset: reflection variant", data_dir="./physicsgen/urban_sound_25k_combined" ), datasets.BuilderConfig( name="lens_p1", description="Distortion dataset variant", data_dir="./physicsgen/lens_distortion_p1" ), datasets.BuilderConfig( name="lens_p2", description="Distortion dataset variant", data_dir="./physicsgen/lens_distortion_p2" ), datasets.BuilderConfig( name="ball_roll", description="Double image dataset variant", data_dir="./physicsgen/ball_roll" ), datasets.BuilderConfig( name="ball_bounce", description="Double image dataset variant", data_dir="./physicsgen/ball_bounce" ), ] class MyPhysicalDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = BUILDER_CONFIGS VERSION = datasets.Version("1.0.2") def _info(self): if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]: features = datasets.Features({ "lat": datasets.Value("float"), "long": datasets.Value("float"), "db": datasets.Value("string"), "soundmap": datasets.Image(), "osm": datasets.Image(), "temperature": datasets.Value("int32"), "humidity": datasets.Value("int32"), "yaw": datasets.Value("float"), "sample_id": datasets.Value("int32"), "soundmap_512": datasets.Image(), }) elif self.config.name in ["lens_p1", "lens_p2"]: features = datasets.Features({ "label_path": datasets.Value("string"), "fx": datasets.Value("float"), "k1": datasets.Value("float"), "k2": datasets.Value("float"), "k3": datasets.Value("float"), "p1": datasets.Value("float"), "p2": datasets.Value("float"), "cx": datasets.Value("float"), "distortion_path": datasets.Value("string"), }) elif self.config.name in ["ball_roll", "ball_bounce"]: features = datasets.Features({ "ImgName": datasets.Value("string"), "StartHeight": datasets.Value("int32"), "GroundIncli": datasets.Value("float"), "InputTime": datasets.Value("int32"), "TargetTime": datasets.Value("int32"), "input_image": datasets.Image(), "target_image": datasets.Image(), }) else: raise ValueError(f"Unknown config name: {self.config.name}") return datasets.DatasetInfo( description="Multiple variant physical tasks dataset.", features=features, ) def _split_generators(self, dl_manager): data_dir = self.config.data_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"split_dir": os.path.join(data_dir, "train")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"split_dir": os.path.join(data_dir, "test")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"split_dir": os.path.join(data_dir, "eval")}, ), ] def _generate_examples(self, split_dir): if self.config.name in ["sound_baseline", "sound_reflection", "sound_diffraction", "sound_combined"]: csv_path = os.path.join(split_dir, "meta_data.csv") with open(csv_path, encoding="utf-8") as f: reader = csv.DictReader(f) for idx, row in enumerate(reader): row["soundmap"] = os.path.join(split_dir, row["soundmap"]) row["osm"] = os.path.join(split_dir, row["osm"]) row["soundmap_512"] = os.path.join(split_dir, row["soundmap_512"]) row["lat"] = float(row["lat"]) row["long"] = float(row["long"]) row["temperature"] = int(row["temperature"]) row["humidity"] = int(row["humidity"]) row["sample_id"] = int(row["sample_id"]) row["yaw"] = float(row["yaw"]) if row["yaw"] else 0.0 yield idx, row elif self.config.name in ["lens_p1", "lens_p2"]: csv_path = os.path.join(split_dir, "meta_data.csv") with open(csv_path, encoding="utf-8") as f: reader = csv.DictReader(f) for idx, row in enumerate(reader): row["label_path"] = str(row["label_path"]) row["distortion_path"] = str(row["distortion_path"]) row["fx"] = float(row["fx"]) row["k1"] = float(row["k1"]) row["k2"] = float(row["k2"]) row["k3"] = float(row["k3"]) row["p1"] = float(row["p1"]) row["p2"] = float(row["p2"]) row["cx"] = float(row["cx"]) yield idx, row elif self.config.name in ["ball_roll", "ball_bounce"]: csv_path = os.path.join(split_dir, "meta_data.csv") with open(csv_path, encoding="utf-8") as f: reader = csv.DictReader(f) for idx, row in enumerate(reader): # Construct image path from ImgName, e.g., "DoubleImg_0.jpg" image_filename = "DoubleImg_" + row["ImgName"] + ".jpg" input_image_path = os.path.join(split_dir, "x", image_filename) target_image_path = os.path.join(split_dir, "y", image_filename) row["input_image"] = input_image_path row["target_image"] = target_image_path row["ImgName"] = row["ImgName"] row["StartHeight"] = int(row["StartHeight"]) row["GroundIncli"] = float(row["GroundIncli"]) row["InputTime"] = int(row["InputTime"]) row["TargetTime"] = int(row["TargetTime"]) yield idx, row