Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
f2827ee
·
verified ·
1 Parent(s): 4ab7451

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +277 -0
README.md CHANGED
@@ -1,4 +1,33 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -26,4 +55,252 @@ configs:
26
  path: data/validation-*
27
  - split: test
28
  path: data/test-*
 
 
 
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - ara
6
+ - bul
7
+ - cmn
8
+ - deu
9
+ - ell
10
+ - eng
11
+ - fra
12
+ - hin
13
+ - ita
14
+ - jpn
15
+ - nld
16
+ - pol
17
+ - por
18
+ - rus
19
+ - spa
20
+ - swa
21
+ - tha
22
+ - tur
23
+ - urd
24
+ - vie
25
+ license: unknown
26
+ multilinguality: monolingual
27
+ task_categories:
28
+ - text-classification
29
+ task_ids:
30
+ - language-identification
31
  dataset_info:
32
  features:
33
  - name: text
 
55
  path: data/validation-*
56
  - split: test
57
  path: data/test-*
58
+ tags:
59
+ - mteb
60
+ - text
61
  ---
62
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
63
+
64
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
65
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">LanguageClassification</h1>
66
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
67
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
68
+ </div>
69
+
70
+ A language identification dataset for 20 languages.
71
+
72
+ | | |
73
+ |---------------|---------------------------------------------|
74
+ | Task category | t2c |
75
+ | Domains | Reviews, Web, Non-fiction, Fiction, Government, Written |
76
+ | Reference | https://huggingface.co/datasets/papluca/language-identification |
77
+
78
+
79
+ ## How to evaluate on this task
80
+
81
+ You can evaluate an embedding model on this dataset using the following code:
82
+
83
+ ```python
84
+ import mteb
85
+
86
+ task = mteb.get_tasks(["LanguageClassification"])
87
+ evaluator = mteb.MTEB(task)
88
+
89
+ model = mteb.get_model(YOUR_MODEL)
90
+ evaluator.run(model)
91
+ ```
92
+
93
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
94
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
95
+
96
+ ## Citation
97
+
98
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
99
+
100
+ ```bibtex
101
+
102
+ @inproceedings{conneau2018xnli,
103
+ author = {Conneau, Alexis
104
+ and Rinott, Ruty
105
+ and Lample, Guillaume
106
+ and Williams, Adina
107
+ and Bowman, Samuel R.
108
+ and Schwenk, Holger
109
+ and Stoyanov, Veselin},
110
+ booktitle = {Proceedings of the 2018 Conference on Empirical Methods
111
+ in Natural Language Processing},
112
+ location = {Brussels, Belgium},
113
+ publisher = {Association for Computational Linguistics},
114
+ title = {XNLI: Evaluating Cross-lingual Sentence Representations},
115
+ year = {2018},
116
+ }
117
+
118
+
119
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
120
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
121
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
122
+ publisher = {arXiv},
123
+ journal={arXiv preprint arXiv:2502.13595},
124
+ year={2025},
125
+ url={https://arxiv.org/abs/2502.13595},
126
+ doi = {10.48550/arXiv.2502.13595},
127
+ }
128
+
129
+ @article{muennighoff2022mteb,
130
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
131
+ title = {MTEB: Massive Text Embedding Benchmark},
132
+ publisher = {arXiv},
133
+ journal={arXiv preprint arXiv:2210.07316},
134
+ year = {2022}
135
+ url = {https://arxiv.org/abs/2210.07316},
136
+ doi = {10.48550/ARXIV.2210.07316},
137
+ }
138
+ ```
139
+
140
+ # Dataset Statistics
141
+ <details>
142
+ <summary> Dataset Statistics</summary>
143
+
144
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
145
+
146
+ ```python
147
+ import mteb
148
+
149
+ task = mteb.get_task("LanguageClassification")
150
+
151
+ desc_stats = task.metadata.descriptive_stats
152
+ ```
153
+
154
+ ```json
155
+ {
156
+ "test": {
157
+ "num_samples": 2048,
158
+ "number_of_characters": 224352,
159
+ "num_texts_in_train": 31,
160
+ "min_text_length": 14,
161
+ "average_text_length": 109.546875,
162
+ "max_text_length": 1270,
163
+ "unique_text": 2025,
164
+ "unique_labels": 20,
165
+ "labels": {
166
+ "17": {
167
+ "count": 102
168
+ },
169
+ "0": {
170
+ "count": 102
171
+ },
172
+ "11": {
173
+ "count": 102
174
+ },
175
+ "4": {
176
+ "count": 103
177
+ },
178
+ "3": {
179
+ "count": 102
180
+ },
181
+ "1": {
182
+ "count": 102
183
+ },
184
+ "10": {
185
+ "count": 102
186
+ },
187
+ "2": {
188
+ "count": 103
189
+ },
190
+ "16": {
191
+ "count": 103
192
+ },
193
+ "9": {
194
+ "count": 103
195
+ },
196
+ "5": {
197
+ "count": 102
198
+ },
199
+ "7": {
200
+ "count": 102
201
+ },
202
+ "13": {
203
+ "count": 102
204
+ },
205
+ "14": {
206
+ "count": 103
207
+ },
208
+ "12": {
209
+ "count": 102
210
+ },
211
+ "15": {
212
+ "count": 103
213
+ },
214
+ "19": {
215
+ "count": 102
216
+ },
217
+ "18": {
218
+ "count": 102
219
+ },
220
+ "6": {
221
+ "count": 103
222
+ },
223
+ "8": {
224
+ "count": 103
225
+ }
226
+ }
227
+ },
228
+ "train": {
229
+ "num_samples": 70000,
230
+ "number_of_characters": 7760299,
231
+ "num_texts_in_train": null,
232
+ "min_text_length": 2,
233
+ "average_text_length": 110.86141428571429,
234
+ "max_text_length": 2422,
235
+ "unique_text": 68978,
236
+ "unique_labels": 20,
237
+ "labels": {
238
+ "12": {
239
+ "count": 3500
240
+ },
241
+ "1": {
242
+ "count": 3500
243
+ },
244
+ "19": {
245
+ "count": 3500
246
+ },
247
+ "15": {
248
+ "count": 3500
249
+ },
250
+ "13": {
251
+ "count": 3500
252
+ },
253
+ "11": {
254
+ "count": 3500
255
+ },
256
+ "17": {
257
+ "count": 3500
258
+ },
259
+ "14": {
260
+ "count": 3500
261
+ },
262
+ "16": {
263
+ "count": 3500
264
+ },
265
+ "5": {
266
+ "count": 3500
267
+ },
268
+ "0": {
269
+ "count": 3500
270
+ },
271
+ "8": {
272
+ "count": 3500
273
+ },
274
+ "7": {
275
+ "count": 3500
276
+ },
277
+ "2": {
278
+ "count": 3500
279
+ },
280
+ "3": {
281
+ "count": 3500
282
+ },
283
+ "10": {
284
+ "count": 3500
285
+ },
286
+ "6": {
287
+ "count": 3500
288
+ },
289
+ "18": {
290
+ "count": 3500
291
+ },
292
+ "4": {
293
+ "count": 3500
294
+ },
295
+ "9": {
296
+ "count": 3500
297
+ }
298
+ }
299
+ }
300
+ }
301
+ ```
302
+
303
+ </details>
304
+
305
+ ---
306
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*