Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
6db3c27
·
verified ·
1 Parent(s): f5dbc24

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +192 -2
README.md CHANGED
@@ -1,4 +1,194 @@
1
  ---
 
 
2
  language:
3
- - en
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
  language:
5
+ - eng
6
+ license: other
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/biorxiv-clustering-p2p
10
+ task_categories:
11
+ - text-clustering
12
+ task_ids:
13
+ - Thematic clustering
14
+ tags:
15
+ - mteb
16
+ - text
17
+ ---
18
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
19
+
20
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
21
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">BiorxivClusteringP2P.v2</h1>
22
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
23
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
24
+ </div>
25
+
26
+ Clustering of titles+abstract from biorxiv across 26 categories.
27
+
28
+ | | |
29
+ |---------------|---------------------------------------------|
30
+ | Task category | t2c |
31
+ | Domains | Academic, Written |
32
+ | Reference | https://api.biorxiv.org/ |
33
+
34
+
35
+ ## How to evaluate on this task
36
+
37
+ You can evaluate an embedding model on this dataset using the following code:
38
+
39
+ ```python
40
+ import mteb
41
+
42
+ task = mteb.get_tasks(["BiorxivClusteringP2P.v2"])
43
+ evaluator = mteb.MTEB(task)
44
+
45
+ model = mteb.get_model(YOUR_MODEL)
46
+ evaluator.run(model)
47
+ ```
48
+
49
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
50
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
51
+
52
+ ## Citation
53
+
54
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
55
+
56
+ ```bibtex
57
+
58
+
59
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
60
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
61
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
62
+ publisher = {arXiv},
63
+ journal={arXiv preprint arXiv:2502.13595},
64
+ year={2025},
65
+ url={https://arxiv.org/abs/2502.13595},
66
+ doi = {10.48550/arXiv.2502.13595},
67
+ }
68
+
69
+ @article{muennighoff2022mteb,
70
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
71
+ title = {MTEB: Massive Text Embedding Benchmark},
72
+ publisher = {arXiv},
73
+ journal={arXiv preprint arXiv:2210.07316},
74
+ year = {2022}
75
+ url = {https://arxiv.org/abs/2210.07316},
76
+ doi = {10.48550/ARXIV.2210.07316},
77
+ }
78
+ ```
79
+
80
+ # Dataset Statistics
81
+ <details>
82
+ <summary> Dataset Statistics</summary>
83
+
84
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
85
+
86
+ ```python
87
+ import mteb
88
+
89
+ task = mteb.get_task("BiorxivClusteringP2P.v2")
90
+
91
+ desc_stats = task.metadata.descriptive_stats
92
+ ```
93
+
94
+ ```json
95
+ {
96
+ "test": {
97
+ "num_samples": 53787,
98
+ "number_of_characters": 89499827,
99
+ "min_text_length": 139,
100
+ "average_text_length": 1663.9676315838399,
101
+ "max_text_length": 8912,
102
+ "unique_texts": 3239,
103
+ "min_labels_per_text": 4,
104
+ "average_labels_per_text": 1.0,
105
+ "max_labels_per_text": 9821,
106
+ "unique_labels": 26,
107
+ "labels": {
108
+ "bioinformatics": {
109
+ "count": 4324
110
+ },
111
+ "evolutionary biology": {
112
+ "count": 2548
113
+ },
114
+ "synthetic biology": {
115
+ "count": 480
116
+ },
117
+ "genetics": {
118
+ "count": 1668
119
+ },
120
+ "plant biology": {
121
+ "count": 2005
122
+ },
123
+ "neuroscience": {
124
+ "count": 9821
125
+ },
126
+ "zoology": {
127
+ "count": 297
128
+ },
129
+ "biophysics": {
130
+ "count": 2700
131
+ },
132
+ "developmental biology": {
133
+ "count": 1720
134
+ },
135
+ "cell biology": {
136
+ "count": 3179
137
+ },
138
+ "bioengineering": {
139
+ "count": 1626
140
+ },
141
+ "microbiology": {
142
+ "count": 5368
143
+ },
144
+ "ecology": {
145
+ "count": 2467
146
+ },
147
+ "biochemistry": {
148
+ "count": 2167
149
+ },
150
+ "genomics": {
151
+ "count": 2423
152
+ },
153
+ "animal behavior and cognition": {
154
+ "count": 816
155
+ },
156
+ "cancer biology": {
157
+ "count": 2105
158
+ },
159
+ "immunology": {
160
+ "count": 2632
161
+ },
162
+ "scientific communication and education": {
163
+ "count": 245
164
+ },
165
+ "systems biology": {
166
+ "count": 1078
167
+ },
168
+ "molecular biology": {
169
+ "count": 2094
170
+ },
171
+ "physiology": {
172
+ "count": 936
173
+ },
174
+ "epidemiology": {
175
+ "count": 4
176
+ },
177
+ "pharmacology and toxicology": {
178
+ "count": 634
179
+ },
180
+ "pathology": {
181
+ "count": 364
182
+ },
183
+ "paleontology": {
184
+ "count": 86
185
+ }
186
+ }
187
+ }
188
+ }
189
+ ```
190
+
191
+ </details>
192
+
193
+ ---
194
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*