Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
108ec5b
·
verified ·
1 Parent(s): ec20c81

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +266 -2
README.md CHANGED
@@ -1,4 +1,268 @@
1
  ---
 
 
2
  language:
3
- - en
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
  language:
5
+ - eng
6
+ license: other
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/medrxiv-clustering-s2s
10
+ task_categories:
11
+ - text-clustering
12
+ task_ids:
13
+ - Thematic clustering
14
+ tags:
15
+ - mteb
16
+ - text
17
+ ---
18
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
19
+
20
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
21
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MedrxivClusteringS2S.v2</h1>
22
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
23
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
24
+ </div>
25
+
26
+ Clustering of titles from medrxiv across 51 categories.
27
+
28
+ | | |
29
+ |---------------|---------------------------------------------|
30
+ | Task category | t2c |
31
+ | Domains | Academic, Medical, Written |
32
+ | Reference | https://api.medrxiv.org/ |
33
+
34
+
35
+ ## How to evaluate on this task
36
+
37
+ You can evaluate an embedding model on this dataset using the following code:
38
+
39
+ ```python
40
+ import mteb
41
+
42
+ task = mteb.get_tasks(["MedrxivClusteringS2S.v2"])
43
+ evaluator = mteb.MTEB(task)
44
+
45
+ model = mteb.get_model(YOUR_MODEL)
46
+ evaluator.run(model)
47
+ ```
48
+
49
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
50
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
51
+
52
+ ## Citation
53
+
54
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
55
+
56
+ ```bibtex
57
+
58
+
59
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
60
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
61
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
62
+ publisher = {arXiv},
63
+ journal={arXiv preprint arXiv:2502.13595},
64
+ year={2025},
65
+ url={https://arxiv.org/abs/2502.13595},
66
+ doi = {10.48550/arXiv.2502.13595},
67
+ }
68
+
69
+ @article{muennighoff2022mteb,
70
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
71
+ title = {MTEB: Massive Text Embedding Benchmark},
72
+ publisher = {arXiv},
73
+ journal={arXiv preprint arXiv:2210.07316},
74
+ year = {2022}
75
+ url = {https://arxiv.org/abs/2210.07316},
76
+ doi = {10.48550/ARXIV.2210.07316},
77
+ }
78
+ ```
79
+
80
+ # Dataset Statistics
81
+ <details>
82
+ <summary> Dataset Statistics</summary>
83
+
84
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
85
+
86
+ ```python
87
+ import mteb
88
+
89
+ task = mteb.get_task("MedrxivClusteringS2S.v2")
90
+
91
+ desc_stats = task.metadata.descriptive_stats
92
+ ```
93
+
94
+ ```json
95
+ {
96
+ "test": {
97
+ "num_samples": 37500,
98
+ "number_of_characters": 4301276,
99
+ "min_text_length": 18,
100
+ "average_text_length": 114.70069333333333,
101
+ "max_text_length": 339,
102
+ "min_labels_per_text": 6,
103
+ "average_labels_per_text": 1.0,
104
+ "max_labels_per_text": 8830,
105
+ "unique_labels": 51,
106
+ "labels": {
107
+ "epidemiology": {
108
+ "count": 6656
109
+ },
110
+ "public and global health": {
111
+ "count": 3595
112
+ },
113
+ "oncology": {
114
+ "count": 845
115
+ },
116
+ "allergy and immunology": {
117
+ "count": 464
118
+ },
119
+ "orthopedics": {
120
+ "count": 104
121
+ },
122
+ "health informatics": {
123
+ "count": 1107
124
+ },
125
+ "occupational and environmental health": {
126
+ "count": 415
127
+ },
128
+ "infectious diseases": {
129
+ "count": 8830
130
+ },
131
+ "genetic and genomic medicine": {
132
+ "count": 1918
133
+ },
134
+ "health policy": {
135
+ "count": 527
136
+ },
137
+ "gastroenterology": {
138
+ "count": 343
139
+ },
140
+ "radiology and imaging": {
141
+ "count": 541
142
+ },
143
+ "pain medicine": {
144
+ "count": 121
145
+ },
146
+ "neurology": {
147
+ "count": 1773
148
+ },
149
+ "primary care research": {
150
+ "count": 232
151
+ },
152
+ "rheumatology": {
153
+ "count": 189
154
+ },
155
+ "endocrinology": {
156
+ "count": 419
157
+ },
158
+ "hematology": {
159
+ "count": 202
160
+ },
161
+ "addiction medicine": {
162
+ "count": 178
163
+ },
164
+ "pediatrics": {
165
+ "count": 589
166
+ },
167
+ "cardiovascular medicine": {
168
+ "count": 855
169
+ },
170
+ "obstetrics and gynecology": {
171
+ "count": 373
172
+ },
173
+ "health systems and quality improvement": {
174
+ "count": 491
175
+ },
176
+ "nephrology": {
177
+ "count": 241
178
+ },
179
+ "respiratory medicine": {
180
+ "count": 482
181
+ },
182
+ "geriatric medicine": {
183
+ "count": 169
184
+ },
185
+ "dentistry and oral medicine": {
186
+ "count": 159
187
+ },
188
+ "psychiatry and clinical psychology": {
189
+ "count": 1781
190
+ },
191
+ "nutrition": {
192
+ "count": 240
193
+ },
194
+ "intensive care and critical care medicine": {
195
+ "count": 368
196
+ },
197
+ "rehabilitation medicine and physical therapy": {
198
+ "count": 322
199
+ },
200
+ "otolaryngology": {
201
+ "count": 166
202
+ },
203
+ "nursing": {
204
+ "count": 93
205
+ },
206
+ "transplantation": {
207
+ "count": 118
208
+ },
209
+ "health economics": {
210
+ "count": 327
211
+ },
212
+ "sports medicine": {
213
+ "count": 180
214
+ },
215
+ "hiv aids": {
216
+ "count": 363
217
+ },
218
+ "dermatology": {
219
+ "count": 98
220
+ },
221
+ "pathology": {
222
+ "count": 223
223
+ },
224
+ "emergency medicine": {
225
+ "count": 191
226
+ },
227
+ "pharmacology and therapeutics": {
228
+ "count": 221
229
+ },
230
+ "ophthalmology": {
231
+ "count": 220
232
+ },
233
+ "medical ethics": {
234
+ "count": 46
235
+ },
236
+ "palliative medicine": {
237
+ "count": 45
238
+ },
239
+ "sexual and reproductive health": {
240
+ "count": 156
241
+ },
242
+ "medical education": {
243
+ "count": 203
244
+ },
245
+ "surgery": {
246
+ "count": 162
247
+ },
248
+ "urology": {
249
+ "count": 65
250
+ },
251
+ "anesthesia": {
252
+ "count": 72
253
+ },
254
+ "toxicology": {
255
+ "count": 16
256
+ },
257
+ "forensic medicine": {
258
+ "count": 6
259
+ }
260
+ }
261
+ }
262
+ }
263
+ ```
264
+
265
+ </details>
266
+
267
+ ---
268
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*