Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Samoed commited on
Commit
f0a63f1
·
verified ·
1 Parent(s): fc24a3c

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +464 -0
README.md CHANGED
@@ -1,4 +1,23 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: arabic-corpus
4
  features:
@@ -813,4 +832,449 @@ configs:
813
  path: thai-queries/dev-*
814
  - split: test
815
  path: thai-queries/test-*
 
 
 
816
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - ara
6
+ - ben
7
+ - eng
8
+ - fin
9
+ - ind
10
+ - jpn
11
+ - kor
12
+ - rus
13
+ - swa
14
+ - tel
15
+ - tha
16
+ license: cc-by-sa-3.0
17
+ multilinguality: multilingual
18
+ task_categories:
19
+ - text-retrieval
20
+ task_ids: []
21
  dataset_info:
22
  - config_name: arabic-corpus
23
  features:
 
832
  path: thai-queries/dev-*
833
  - split: test
834
  path: thai-queries/test-*
835
+ tags:
836
+ - mteb
837
+ - text
838
  ---
839
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
840
+
841
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
842
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MrTidyRetrieval</h1>
843
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
844
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
845
+ </div>
846
+
847
+ Mr. TyDi is a multi-lingual benchmark dataset built on TyDi, covering eleven typologically diverse languages. It is designed for monolingual retrieval, specifically to evaluate ranking with learned dense representations.
848
+
849
+ | | |
850
+ |---------------|---------------------------------------------|
851
+ | Task category | t2t |
852
+ | Domains | Encyclopaedic, Written |
853
+ | Reference | https://huggingface.co/datasets/castorini/mr-tydi |
854
+
855
+
856
+ ## How to evaluate on this task
857
+
858
+ You can evaluate an embedding model on this dataset using the following code:
859
+
860
+ ```python
861
+ import mteb
862
+
863
+ task = mteb.get_tasks(["MrTidyRetrieval"])
864
+ evaluator = mteb.MTEB(task)
865
+
866
+ model = mteb.get_model(YOUR_MODEL)
867
+ evaluator.run(model)
868
+ ```
869
+
870
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
871
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
872
+
873
+ ## Citation
874
+
875
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
876
+
877
+ ```bibtex
878
+
879
+ @article{mrtydi,
880
+ author = {Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
881
+ journal = {arXiv:2108.08787},
882
+ title = {{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
883
+ year = {2021},
884
+ }
885
+
886
+
887
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
888
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
889
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
890
+ publisher = {arXiv},
891
+ journal={arXiv preprint arXiv:2502.13595},
892
+ year={2025},
893
+ url={https://arxiv.org/abs/2502.13595},
894
+ doi = {10.48550/arXiv.2502.13595},
895
+ }
896
+
897
+ @article{muennighoff2022mteb,
898
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
899
+ title = {MTEB: Massive Text Embedding Benchmark},
900
+ publisher = {arXiv},
901
+ journal={arXiv preprint arXiv:2210.07316},
902
+ year = {2022}
903
+ url = {https://arxiv.org/abs/2210.07316},
904
+ doi = {10.48550/ARXIV.2210.07316},
905
+ }
906
+ ```
907
+
908
+ # Dataset Statistics
909
+ <details>
910
+ <summary> Dataset Statistics</summary>
911
+
912
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
913
+
914
+ ```python
915
+ import mteb
916
+
917
+ task = mteb.get_task("MrTidyRetrieval")
918
+
919
+ desc_stats = task.metadata.descriptive_stats
920
+ ```
921
+
922
+ ```json
923
+ {
924
+ "test": {
925
+ "num_samples": 58051987,
926
+ "number_of_characters": 20129435459,
927
+ "num_documents": 58043326,
928
+ "min_document_length": 2,
929
+ "average_document_length": 346.79462777512094,
930
+ "max_document_length": 61659,
931
+ "unique_documents": 58043326,
932
+ "num_queries": 8661,
933
+ "min_query_length": 6,
934
+ "average_query_length": 37.15783396836393,
935
+ "max_query_length": 144,
936
+ "unique_queries": 8661,
937
+ "none_queries": 0,
938
+ "num_relevant_docs": 10105,
939
+ "min_relevant_docs_per_query": 1,
940
+ "average_relevant_docs_per_query": 1.1667243967209329,
941
+ "max_relevant_docs_per_query": 3,
942
+ "unique_relevant_docs": 8926,
943
+ "num_instructions": null,
944
+ "min_instruction_length": null,
945
+ "average_instruction_length": null,
946
+ "max_instruction_length": null,
947
+ "unique_instructions": null,
948
+ "num_top_ranked": null,
949
+ "min_top_ranked_per_query": null,
950
+ "average_top_ranked_per_query": null,
951
+ "max_top_ranked_per_query": null,
952
+ "hf_subset_descriptive_stats": {
953
+ "bengali": {
954
+ "num_samples": 304170,
955
+ "number_of_characters": 115881122,
956
+ "num_documents": 304059,
957
+ "min_document_length": 3,
958
+ "average_document_length": 381.0952940054397,
959
+ "max_document_length": 16797,
960
+ "unique_documents": 304059,
961
+ "num_queries": 111,
962
+ "min_query_length": 20,
963
+ "average_query_length": 51.06306306306306,
964
+ "max_query_length": 122,
965
+ "unique_queries": 111,
966
+ "none_queries": 0,
967
+ "num_relevant_docs": 130,
968
+ "min_relevant_docs_per_query": 1,
969
+ "average_relevant_docs_per_query": 1.1711711711711712,
970
+ "max_relevant_docs_per_query": 2,
971
+ "unique_relevant_docs": 116,
972
+ "num_instructions": null,
973
+ "min_instruction_length": null,
974
+ "average_instruction_length": null,
975
+ "max_instruction_length": null,
976
+ "unique_instructions": null,
977
+ "num_top_ranked": null,
978
+ "min_top_ranked_per_query": null,
979
+ "average_top_ranked_per_query": null,
980
+ "max_top_ranked_per_query": null
981
+ },
982
+ "english": {
983
+ "num_samples": 32907844,
984
+ "number_of_characters": 13206799486,
985
+ "num_documents": 32907100,
986
+ "min_document_length": 3,
987
+ "average_document_length": 401.3349509376396,
988
+ "max_document_length": 36471,
989
+ "unique_documents": 32907100,
990
+ "num_queries": 744,
991
+ "min_query_length": 16,
992
+ "average_query_length": 40.486559139784944,
993
+ "max_query_length": 108,
994
+ "unique_queries": 744,
995
+ "none_queries": 0,
996
+ "num_relevant_docs": 935,
997
+ "min_relevant_docs_per_query": 1,
998
+ "average_relevant_docs_per_query": 1.256720430107527,
999
+ "max_relevant_docs_per_query": 3,
1000
+ "unique_relevant_docs": 908,
1001
+ "num_instructions": null,
1002
+ "min_instruction_length": null,
1003
+ "average_instruction_length": null,
1004
+ "max_instruction_length": null,
1005
+ "unique_instructions": null,
1006
+ "num_top_ranked": null,
1007
+ "min_top_ranked_per_query": null,
1008
+ "average_top_ranked_per_query": null,
1009
+ "max_top_ranked_per_query": null
1010
+ },
1011
+ "finnish": {
1012
+ "num_samples": 1910011,
1013
+ "number_of_characters": 687045646,
1014
+ "num_documents": 1908757,
1015
+ "min_document_length": 4,
1016
+ "average_document_length": 359.91926578396306,
1017
+ "max_document_length": 29389,
1018
+ "unique_documents": 1908757,
1019
+ "num_queries": 1254,
1020
+ "min_query_length": 13,
1021
+ "average_query_length": 37.66188197767145,
1022
+ "max_query_length": 89,
1023
+ "unique_queries": 1254,
1024
+ "none_queries": 0,
1025
+ "num_relevant_docs": 1451,
1026
+ "min_relevant_docs_per_query": 1,
1027
+ "average_relevant_docs_per_query": 1.157097288676236,
1028
+ "max_relevant_docs_per_query": 3,
1029
+ "unique_relevant_docs": 1186,
1030
+ "num_instructions": null,
1031
+ "min_instruction_length": null,
1032
+ "average_instruction_length": null,
1033
+ "max_instruction_length": null,
1034
+ "unique_instructions": null,
1035
+ "num_top_ranked": null,
1036
+ "min_top_ranked_per_query": null,
1037
+ "average_top_ranked_per_query": null,
1038
+ "max_top_ranked_per_query": null
1039
+ },
1040
+ "russian": {
1041
+ "num_samples": 9598499,
1042
+ "number_of_characters": 3197142093,
1043
+ "num_documents": 9597504,
1044
+ "min_document_length": 4,
1045
+ "average_document_length": 333.1173902089543,
1046
+ "max_document_length": 61659,
1047
+ "unique_documents": 9597504,
1048
+ "num_queries": 995,
1049
+ "min_query_length": 14,
1050
+ "average_query_length": 46.84221105527638,
1051
+ "max_query_length": 138,
1052
+ "unique_queries": 995,
1053
+ "none_queries": 0,
1054
+ "num_relevant_docs": 1168,
1055
+ "min_relevant_docs_per_query": 1,
1056
+ "average_relevant_docs_per_query": 1.1738693467336683,
1057
+ "max_relevant_docs_per_query": 3,
1058
+ "unique_relevant_docs": 1100,
1059
+ "num_instructions": null,
1060
+ "min_instruction_length": null,
1061
+ "average_instruction_length": null,
1062
+ "max_instruction_length": null,
1063
+ "unique_instructions": null,
1064
+ "num_top_ranked": null,
1065
+ "min_top_ranked_per_query": null,
1066
+ "average_top_ranked_per_query": null,
1067
+ "max_top_ranked_per_query": null
1068
+ },
1069
+ "korean": {
1070
+ "num_samples": 1496547,
1071
+ "number_of_characters": 260689346,
1072
+ "num_documents": 1496126,
1073
+ "min_document_length": 3,
1074
+ "average_document_length": 174.23649812916827,
1075
+ "max_document_length": 25246,
1076
+ "unique_documents": 1496126,
1077
+ "num_queries": 421,
1078
+ "min_query_length": 6,
1079
+ "average_query_length": 22.78147268408551,
1080
+ "max_query_length": 122,
1081
+ "unique_queries": 421,
1082
+ "none_queries": 0,
1083
+ "num_relevant_docs": 492,
1084
+ "min_relevant_docs_per_query": 1,
1085
+ "average_relevant_docs_per_query": 1.168646080760095,
1086
+ "max_relevant_docs_per_query": 3,
1087
+ "unique_relevant_docs": 397,
1088
+ "num_instructions": null,
1089
+ "min_instruction_length": null,
1090
+ "average_instruction_length": null,
1091
+ "max_instruction_length": null,
1092
+ "unique_instructions": null,
1093
+ "num_top_ranked": null,
1094
+ "min_top_ranked_per_query": null,
1095
+ "average_top_ranked_per_query": null,
1096
+ "max_top_ranked_per_query": null
1097
+ },
1098
+ "japanese": {
1099
+ "num_samples": 7000747,
1100
+ "number_of_characters": 1028855660,
1101
+ "num_documents": 7000027,
1102
+ "min_document_length": 2,
1103
+ "average_document_length": 146.97695323175182,
1104
+ "max_document_length": 25236,
1105
+ "unique_documents": 7000027,
1106
+ "num_queries": 720,
1107
+ "min_query_length": 6,
1108
+ "average_query_length": 18.081944444444446,
1109
+ "max_query_length": 44,
1110
+ "unique_queries": 720,
1111
+ "none_queries": 0,
1112
+ "num_relevant_docs": 923,
1113
+ "min_relevant_docs_per_query": 1,
1114
+ "average_relevant_docs_per_query": 1.2819444444444446,
1115
+ "max_relevant_docs_per_query": 3,
1116
+ "unique_relevant_docs": 880,
1117
+ "num_instructions": null,
1118
+ "min_instruction_length": null,
1119
+ "average_instruction_length": null,
1120
+ "max_instruction_length": null,
1121
+ "unique_instructions": null,
1122
+ "num_top_ranked": null,
1123
+ "min_top_ranked_per_query": null,
1124
+ "average_top_ranked_per_query": null,
1125
+ "max_top_ranked_per_query": null
1126
+ },
1127
+ "telugu": {
1128
+ "num_samples": 548870,
1129
+ "number_of_characters": 210635377,
1130
+ "num_documents": 548224,
1131
+ "min_document_length": 5,
1132
+ "average_document_length": 384.1695584286715,
1133
+ "max_document_length": 17850,
1134
+ "unique_documents": 548224,
1135
+ "num_queries": 646,
1136
+ "min_query_length": 13,
1137
+ "average_query_length": 37.77863777089783,
1138
+ "max_query_length": 119,
1139
+ "unique_queries": 646,
1140
+ "none_queries": 0,
1141
+ "num_relevant_docs": 677,
1142
+ "min_relevant_docs_per_query": 1,
1143
+ "average_relevant_docs_per_query": 1.0479876160990713,
1144
+ "max_relevant_docs_per_query": 2,
1145
+ "unique_relevant_docs": 600,
1146
+ "num_instructions": null,
1147
+ "min_instruction_length": null,
1148
+ "average_instruction_length": null,
1149
+ "max_instruction_length": null,
1150
+ "unique_instructions": null,
1151
+ "num_top_ranked": null,
1152
+ "min_top_ranked_per_query": null,
1153
+ "average_top_ranked_per_query": null,
1154
+ "max_top_ranked_per_query": null
1155
+ },
1156
+ "thai": {
1157
+ "num_samples": 570045,
1158
+ "number_of_characters": 203126081,
1159
+ "num_documents": 568855,
1160
+ "min_document_length": 5,
1161
+ "average_document_length": 356.989797048457,
1162
+ "max_document_length": 31251,
1163
+ "unique_documents": 568855,
1164
+ "num_queries": 1190,
1165
+ "min_query_length": 13,
1166
+ "average_query_length": 42.563025210084035,
1167
+ "max_query_length": 144,
1168
+ "unique_queries": 1190,
1169
+ "none_queries": 0,
1170
+ "num_relevant_docs": 1368,
1171
+ "min_relevant_docs_per_query": 1,
1172
+ "average_relevant_docs_per_query": 1.149579831932773,
1173
+ "max_relevant_docs_per_query": 3,
1174
+ "unique_relevant_docs": 1163,
1175
+ "num_instructions": null,
1176
+ "min_instruction_length": null,
1177
+ "average_instruction_length": null,
1178
+ "max_instruction_length": null,
1179
+ "unique_instructions": null,
1180
+ "num_top_ranked": null,
1181
+ "min_top_ranked_per_query": null,
1182
+ "average_top_ranked_per_query": null,
1183
+ "max_top_ranked_per_query": null
1184
+ },
1185
+ "swahili": {
1186
+ "num_samples": 137359,
1187
+ "number_of_characters": 31479914,
1188
+ "num_documents": 136689,
1189
+ "min_document_length": 6,
1190
+ "average_document_length": 230.0977328095165,
1191
+ "max_document_length": 11203,
1192
+ "unique_documents": 136689,
1193
+ "num_queries": 670,
1194
+ "min_query_length": 15,
1195
+ "average_query_length": 41.917910447761194,
1196
+ "max_query_length": 98,
1197
+ "unique_queries": 670,
1198
+ "none_queries": 0,
1199
+ "num_relevant_docs": 743,
1200
+ "min_relevant_docs_per_query": 1,
1201
+ "average_relevant_docs_per_query": 1.108955223880597,
1202
+ "max_relevant_docs_per_query": 3,
1203
+ "unique_relevant_docs": 552,
1204
+ "num_instructions": null,
1205
+ "min_instruction_length": null,
1206
+ "average_instruction_length": null,
1207
+ "max_instruction_length": null,
1208
+ "unique_instructions": null,
1209
+ "num_top_ranked": null,
1210
+ "min_top_ranked_per_query": null,
1211
+ "average_top_ranked_per_query": null,
1212
+ "max_top_ranked_per_query": null
1213
+ },
1214
+ "arabic": {
1215
+ "num_samples": 2107667,
1216
+ "number_of_characters": 673016175,
1217
+ "num_documents": 2106586,
1218
+ "min_document_length": 5,
1219
+ "average_document_length": 319.4662733921141,
1220
+ "max_document_length": 48550,
1221
+ "unique_documents": 2106586,
1222
+ "num_queries": 1081,
1223
+ "min_query_length": 12,
1224
+ "average_query_length": 30.523589269195188,
1225
+ "max_query_length": 93,
1226
+ "unique_queries": 1081,
1227
+ "none_queries": 0,
1228
+ "num_relevant_docs": 1257,
1229
+ "min_relevant_docs_per_query": 1,
1230
+ "average_relevant_docs_per_query": 1.1628122109158188,
1231
+ "max_relevant_docs_per_query": 3,
1232
+ "unique_relevant_docs": 1138,
1233
+ "num_instructions": null,
1234
+ "min_instruction_length": null,
1235
+ "average_instruction_length": null,
1236
+ "max_instruction_length": null,
1237
+ "unique_instructions": null,
1238
+ "num_top_ranked": null,
1239
+ "min_top_ranked_per_query": null,
1240
+ "average_top_ranked_per_query": null,
1241
+ "max_top_ranked_per_query": null
1242
+ },
1243
+ "indonesian": {
1244
+ "num_samples": 1470228,
1245
+ "number_of_characters": 514764559,
1246
+ "num_documents": 1469399,
1247
+ "min_document_length": 4,
1248
+ "average_document_length": 350.3004337147364,
1249
+ "max_document_length": 39539,
1250
+ "unique_documents": 1469399,
1251
+ "num_queries": 829,
1252
+ "min_query_length": 17,
1253
+ "average_query_length": 40.352231604342585,
1254
+ "max_query_length": 128,
1255
+ "unique_queries": 829,
1256
+ "none_queries": 0,
1257
+ "num_relevant_docs": 961,
1258
+ "min_relevant_docs_per_query": 1,
1259
+ "average_relevant_docs_per_query": 1.1592279855247285,
1260
+ "max_relevant_docs_per_query": 3,
1261
+ "unique_relevant_docs": 886,
1262
+ "num_instructions": null,
1263
+ "min_instruction_length": null,
1264
+ "average_instruction_length": null,
1265
+ "max_instruction_length": null,
1266
+ "unique_instructions": null,
1267
+ "num_top_ranked": null,
1268
+ "min_top_ranked_per_query": null,
1269
+ "average_top_ranked_per_query": null,
1270
+ "max_top_ranked_per_query": null
1271
+ }
1272
+ }
1273
+ }
1274
+ }
1275
+ ```
1276
+
1277
+ </details>
1278
+
1279
+ ---
1280
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*