Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
955fa09
·
verified ·
1 Parent(s): f8c2fcf

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +174 -55
README.md CHANGED
@@ -1,64 +1,183 @@
1
  ---
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - scidocs
10
- task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: test
27
- num_bytes: 2873088
28
- num_examples: 29928
29
- - config_name: corpus
30
- features:
31
- - name: _id
32
- dtype: string
33
- - name: title
34
- dtype: string
35
- - name: text
36
- dtype: string
37
- splits:
38
- - name: corpus
39
- num_bytes: 32262487
40
- num_examples: 25657
41
- - config_name: queries
42
- features:
43
- - name: _id
44
- dtype: string
45
- - name: text
46
- dtype: string
47
- splits:
48
- - name: queries
49
- num_bytes: 119721
50
- num_examples: 1000
51
  configs:
52
- - config_name: default
53
- data_files:
54
- - split: test
55
- path: qrels/test.jsonl
56
- - config_name: corpus
57
- data_files:
58
- - split: corpus
59
- path: corpus.jsonl
60
- - config_name: queries
61
- data_files:
62
- - split: queries
63
- path: queries.jsonl
64
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
+ - eng
4
+ license: cc-by-sa-4.0
5
+ multilinguality: monolingual
6
  task_categories:
7
  - text-retrieval
8
+ task_ids: []
 
 
 
9
  config_names:
10
  - corpus
11
  tags:
12
+ - mteb
13
+ - text
14
  dataset_info:
15
+ - config_name: default
16
+ features:
17
+ - name: query-id
18
+ dtype: string
19
+ - name: corpus-id
20
+ dtype: string
21
+ - name: score
22
+ dtype: float64
23
+ splits:
24
+ - name: test
25
+ num_bytes: 2873088
26
+ num_examples: 29928
27
+ - config_name: corpus
28
+ features:
29
+ - name: _id
30
+ dtype: string
31
+ - name: title
32
+ dtype: string
33
+ - name: text
34
+ dtype: string
35
+ splits:
36
+ - name: corpus
37
+ num_bytes: 32262487
38
+ num_examples: 25657
39
+ - config_name: queries
40
+ features:
41
+ - name: _id
42
+ dtype: string
43
+ - name: text
44
+ dtype: string
45
+ splits:
46
+ - name: queries
47
+ num_bytes: 119721
48
+ num_examples: 1000
49
  configs:
50
+ - config_name: default
51
+ data_files:
52
+ - split: test
53
+ path: qrels/test.jsonl
54
+ - config_name: corpus
55
+ data_files:
56
+ - split: corpus
57
+ path: corpus.jsonl
58
+ - config_name: queries
59
+ data_files:
60
+ - split: queries
61
+ path: queries.jsonl
62
+ ---
63
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
64
+
65
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
66
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">SCIDOCS</h1>
67
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
68
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
69
+ </div>
70
+
71
+ SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation.
72
+
73
+ | | |
74
+ |---------------|---------------------------------------------|
75
+ | Task category | t2t |
76
+ | Domains | Academic, Written, Non-fiction |
77
+ | Reference | https://allenai.org/data/scidocs |
78
+
79
+
80
+ ## How to evaluate on this task
81
+
82
+ You can evaluate an embedding model on this dataset using the following code:
83
+
84
+ ```python
85
+ import mteb
86
+
87
+ task = mteb.get_tasks(["SCIDOCS"])
88
+ evaluator = mteb.MTEB(task)
89
+
90
+ model = mteb.get_model(YOUR_MODEL)
91
+ evaluator.run(model)
92
+ ```
93
+
94
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
95
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
96
+
97
+ ## Citation
98
+
99
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
100
+
101
+ ```bibtex
102
+
103
+ @inproceedings{specter2020cohan,
104
+ author = {Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
105
+ booktitle = {ACL},
106
+ title = {SPECTER: Document-level Representation Learning using Citation-informed Transformers},
107
+ year = {2020},
108
+ }
109
+
110
+
111
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
112
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
113
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
114
+ publisher = {arXiv},
115
+ journal={arXiv preprint arXiv:2502.13595},
116
+ year={2025},
117
+ url={https://arxiv.org/abs/2502.13595},
118
+ doi = {10.48550/arXiv.2502.13595},
119
+ }
120
+
121
+ @article{muennighoff2022mteb,
122
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
123
+ title = {MTEB: Massive Text Embedding Benchmark},
124
+ publisher = {arXiv},
125
+ journal={arXiv preprint arXiv:2210.07316},
126
+ year = {2022}
127
+ url = {https://arxiv.org/abs/2210.07316},
128
+ doi = {10.48550/ARXIV.2210.07316},
129
+ }
130
+ ```
131
+
132
+ # Dataset Statistics
133
+ <details>
134
+ <summary> Dataset Statistics</summary>
135
+
136
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
137
+
138
+ ```python
139
+ import mteb
140
+
141
+ task = mteb.get_task("SCIDOCS")
142
+
143
+ desc_stats = task.metadata.descriptive_stats
144
+ ```
145
+
146
+ ```json
147
+ {
148
+ "test": {
149
+ "num_samples": 26657,
150
+ "number_of_characters": 30972050,
151
+ "num_documents": 25657,
152
+ "min_document_length": 11,
153
+ "average_document_length": 1204.3659819932182,
154
+ "max_document_length": 10169,
155
+ "unique_documents": 25657,
156
+ "num_queries": 1000,
157
+ "min_query_length": 16,
158
+ "average_query_length": 71.632,
159
+ "max_query_length": 206,
160
+ "unique_queries": 1000,
161
+ "none_queries": 0,
162
+ "num_relevant_docs": 29928,
163
+ "min_relevant_docs_per_query": 27,
164
+ "average_relevant_docs_per_query": 4.928,
165
+ "max_relevant_docs_per_query": 30,
166
+ "unique_relevant_docs": 25657,
167
+ "num_instructions": null,
168
+ "min_instruction_length": null,
169
+ "average_instruction_length": null,
170
+ "max_instruction_length": null,
171
+ "unique_instructions": null,
172
+ "num_top_ranked": null,
173
+ "min_top_ranked_per_query": null,
174
+ "average_top_ranked_per_query": null,
175
+ "max_top_ranked_per_query": null
176
+ }
177
+ }
178
+ ```
179
+
180
+ </details>
181
+
182
+ ---
183
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*