File size: 19,380 Bytes
bceceb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
logger = logging.getLogger(__name__)
def load_and_quantize_model(
model: torch.nn.Module,
bnb_quantization_config: BnbQuantizationConfig,
weights_location: Union[str, os.PathLike] = None,
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
no_split_module_classes: Optional[List[str]] = None,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = None,
offload_state_dict: bool = False,
):
"""
This function will quantize the input model with the associated config passed in `bnb_quantization_config`. If the
model is in the meta device, we will load and dispatch the weights according to the `device_map` passed. If the
model is already loaded, we will quantize the model and put the model on the GPU,
Args:
model (`torch.nn.Module`):
Input model. The model can be already loaded or on the meta device
bnb_quantization_config (`BnbQuantizationConfig`):
The bitsandbytes quantization parameters
weights_location (`str` or `os.PathLike`):
The folder weights_location to load. It can be:
- a path to a file containing a whole model state dict
- a path to a `.json` file containing the index to a sharded checkpoint
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
- a path to a folder containing a unique pytorch_model.bin file.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
offload_state_dict (`bool`, *optional*, defaults to `False`):
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
the weight of the CPU state dict + the biggest shard does not fit.
Returns:
`torch.nn.Module`: The quantized model
"""
load_in_4bit = bnb_quantization_config.load_in_4bit
load_in_8bit = bnb_quantization_config.load_in_8bit
if load_in_8bit and not is_8bit_bnb_available():
raise ImportError(
"You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"
" make sure you have the latest version of `bitsandbytes` installed."
)
if load_in_4bit and not is_4bit_bnb_available():
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"
"make sure you have the latest version of `bitsandbytes` installed."
)
modules_on_cpu = []
# custom device map
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
modules_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
bnb_quantization_config.skip_modules = get_keys_to_not_convert(model)
# add cpu modules to skip modules only for 4-bit modules
if load_in_4bit:
bnb_quantization_config.skip_modules.extend(modules_on_cpu)
modules_to_not_convert = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fp32_modules is None:
bnb_quantization_config.keep_in_fp32_modules = []
keep_in_fp32_modules = bnb_quantization_config.keep_in_fp32_modules
modules_to_not_convert.extend(keep_in_fp32_modules)
# compatibility with peft
model.is_loaded_in_4bit = load_in_4bit
model.is_loaded_in_8bit = load_in_8bit
model_device = get_parameter_device(model)
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"It is not recommended to quantize a loaded model. "
"The model should be instantiated under the `init_empty_weights` context manager."
)
model = replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert)
# convert param to the right dtype
dtype = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fp32 in name for module_to_keep_in_fp32 in keep_in_fp32_modules):
param.to(torch.float32)
if param.dtype != torch.float32:
name = name.replace(".weight", "").replace(".bias", "")
param = getattr(model, name, None)
if param is not None:
param.to(torch.float32)
elif torch.is_floating_point(param):
param.to(dtype)
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device())
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device())
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
logger.info(
f"The model device type is {model_device.type}. However, cuda is needed for quantization."
"We move the model to cuda."
)
return model
elif weights_location is None:
raise RuntimeError(
f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} "
)
else:
with init_empty_weights():
model = replace_with_bnb_layers(
model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert
)
device_map = get_quantized_model_device_map(
model,
bnb_quantization_config,
device_map,
max_memory=max_memory,
no_split_module_classes=no_split_module_classes,
)
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
offload_state_dict = True
offload = any(x in list(device_map.values()) for x in ["cpu", "disk"])
load_checkpoint_in_model(
model,
weights_location,
device_map,
dtype=bnb_quantization_config.torch_dtype,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
keep_in_fp32_modules=bnb_quantization_config.keep_in_fp32_modules,
offload_8bit_bnb=load_in_8bit and offload,
)
return dispatch_model(model, device_map=device_map, offload_dir=offload_folder)
def get_quantized_model_device_map(
model, bnb_quantization_config, device_map=None, max_memory=None, no_split_module_classes=None
):
if device_map is None:
if torch.cuda.is_available():
device_map = {"": torch.cuda.current_device()}
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.")
if isinstance(device_map, str):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'."
)
special_dtypes = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules)
}
)
special_dtypes.update(
{
name: torch.float32
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fp32_modules)
}
)
kwargs = {}
kwargs["special_dtypes"] = special_dtypes
kwargs["no_split_module_classes"] = no_split_module_classes
kwargs["dtype"] = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
max_memory = get_balanced_memory(
model,
low_zero=(device_map == "balanced_low_0"),
max_memory=max_memory,
**kwargs,
)
kwargs["max_memory"] = max_memory
device_map = infer_auto_device_map(model, **kwargs)
if isinstance(device_map, dict):
# check if don't have any quantized module on the cpu
modules_not_to_convert = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fp32_modules
device_map_without_some_modules = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_4bit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
"""
)
else:
logger.info(
"Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit"
)
del device_map_without_some_modules
return device_map
def replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=None, current_key_name=None):
"""
A helper function to replace all `torch.nn.Linear` modules by `bnb.nn.Linear8bit` modules or by `bnb.nn.Linear4bit`
modules from the `bitsandbytes`library. The function will be run recursively and replace `torch.nn.Linear` modules.
Parameters:
model (`torch.nn.Module`):
Input model or `torch.nn.Module` as the function is run recursively.
modules_to_not_convert (`List[str]`):
Names of the modules to not quantize convert. In practice we keep the `lm_head` in full precision for
numerical stability reasons.
current_key_name (`List[str]`, *optional*):
An array to track the current key of the recursion. This is used to check whether the current key (part of
it) is not in the list of modules to not convert.
"""
if modules_to_not_convert is None:
modules_to_not_convert = []
model, has_been_replaced = _replace_with_bnb_layers(
model, bnb_quantization_config, modules_to_not_convert, current_key_name
)
if not has_been_replaced:
logger.warning(
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug."
)
return model
def _replace_with_bnb_layers(
model,
bnb_quantization_config,
modules_to_not_convert=None,
current_key_name=None,
):
"""
Private method that wraps the recursion for module replacement.
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
"""
# bitsandbytes will initialize CUDA on import, so it needs to be imported lazily
import bitsandbytes as bnb
has_been_replaced = False
for name, module in model.named_children():
if current_key_name is None:
current_key_name = []
current_key_name.append(name)
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
current_key_name_str = ".".join(current_key_name)
proceed = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
proceed = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_8bit:
bnb_module = bnb.nn.Linear8bitLt(
module.in_features,
module.out_features,
module.bias is not None,
has_fp16_weights=False,
threshold=bnb_quantization_config.llm_int8_threshold,
)
elif bnb_quantization_config.load_in_4bit:
bnb_module = bnb.nn.Linear4bit(
module.in_features,
module.out_features,
module.bias is not None,
bnb_quantization_config.bnb_4bit_compute_dtype,
compress_statistics=bnb_quantization_config.bnb_4bit_use_double_quant,
quant_type=bnb_quantization_config.bnb_4bit_quant_type,
)
else:
raise ValueError("load_in_8bit and load_in_4bit can't be both False")
bnb_module.weight.data = module.weight.data
if module.bias is not None:
bnb_module.bias.data = module.bias.data
bnb_module.requires_grad_(False)
setattr(model, name, bnb_module)
has_been_replaced = True
if len(list(module.children())) > 0:
_, _has_been_replaced = _replace_with_bnb_layers(
module, bnb_quantization_config, modules_to_not_convert, current_key_name
)
has_been_replaced = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1)
return model, has_been_replaced
def get_keys_to_not_convert(model):
r"""
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
int8.
Parameters:
model (`torch.nn.Module`):
Input model
"""
# Create a copy of the model
with init_empty_weights():
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_params = find_tied_parameters(tied_model)
# For compatibility with Accelerate < 0.18
if isinstance(tied_params, dict):
tied_keys = sum(list(tied_params.values()), []) + list(tied_params.keys())
else:
tied_keys = sum(tied_params, [])
has_tied_params = len(tied_keys) > 0
# Check if it is a base model
is_base_model = False
if hasattr(model, "base_model_prefix"):
is_base_model = not hasattr(model, model.base_model_prefix)
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
list_modules = list(model.named_children())
list_last_module = [list_modules[-1][0]]
# add last module together with tied weights
intersection = set(list_last_module) - set(tied_keys)
list_untouched = list(set(tied_keys)) + list(intersection)
# remove ".weight" from the keys
names_to_remove = [".weight", ".bias"]
filtered_module_names = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
name = name.replace(name_to_remove, "")
filtered_module_names.append(name)
return filtered_module_names
def has_4bit_bnb_layers(model):
"""Check if we have `bnb.nn.Linear4bit` or `bnb.nn.Linear8bitLt` layers inside our model"""
# bitsandbytes will initialize CUDA on import, so it needs to be imported lazily
import bitsandbytes as bnb
for m in model.modules():
if isinstance(m, bnb.nn.Linear4bit):
return True
return False
def get_parameter_device(parameter: nn.Module):
return next(parameter.parameters()).device
def quantize_and_offload_8bit(model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics):
# if it is not quantized, we quantize and offload the quantized weights and the SCB stats
if fp16_statistics is None:
set_module_tensor_to_device(model, param_name, 0, dtype=new_dtype, value=param)
tensor_name = param_name
module = model
if "." in tensor_name:
splits = tensor_name.split(".")
for split in splits[:-1]:
new_module = getattr(module, split)
if new_module is None:
raise ValueError(f"{module} has no attribute {split}.")
module = new_module
tensor_name = splits[-1]
# offload weights
module._parameters[tensor_name].requires_grad = False
offload_weight(module._parameters[tensor_name], param_name, offload_folder, index=offload_index)
if hasattr(module._parameters[tensor_name], "SCB"):
offload_weight(
module._parameters[tensor_name].SCB,
param_name.replace("weight", "SCB"),
offload_folder,
index=offload_index,
)
else:
offload_weight(param, param_name, offload_folder, index=offload_index)
offload_weight(fp16_statistics, param_name.replace("weight", "SCB"), offload_folder, index=offload_index)
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype, value=torch.empty(*param.size()))
|