Datasets:

Modalities:
Text
Formats:
json
Languages:
Hindi
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,190 Bytes
e20ef19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/bin/bash

MODEL_ID="nvidia/Nemotron-4-Mini-Hindi-4B-Instruct"
DATA_FOLDER="ChatRAG-Hi/data"
OUTPUT_FOLDER="ChatRAG-Hi/results"

echo "Running full pipeline for all datasets"
python run_all_evaluation.py \
    --mode full \
    --model-id "$MODEL_ID" \
    --data-folder "$DATA_FOLDER" \
    --output-folder "$OUTPUT_FOLDER" \
    --all-datasets \
    --device cuda \
    --num-ctx 5 \
    --max-tokens 64 \
    --limit 10 

echo "Evaluate specific dataset subset"
python run_all_evaluation.py \
    --mode full \
    --model-id "$MODEL_ID" \
    --data-folder "$DATA_FOLDER" \
    --output-folder "$OUTPUT_FOLDER" \
    --datasets doc2dial quac inscit \
    --device cuda

echo "Evaluation only (predictions already exist)"
python run_all_evaluation.py \
    --mode evaluation \
    --model-id "$MODEL_ID" \
    --data-folder "$DATA_FOLDER" \
    --output-folder "$OUTPUT_FOLDER" \
    --all-datasets


echo "Direct evaluation with get_scores.py"
python get_scores.py \
    --results-dir "$OUTPUT_FOLDER" \
    --data-path "$DATA_FOLDER" \
    --datasets doc2dial quac qrecc inscit hybridial doqa_cooking doqa_travel doqa_movies convfinqa \
    --output-csv "${OUTPUT_FOLDER}/scores.csv"