File size: 18,216 Bytes
e20ef19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
#!/usr/bin/env python3
from evaluation_utils import quac_correct_retrieved_instance_idx_list
from evaluation_utils import unanswerable_keyphrases
from arguments import get_args_scores
import json
from metrics import F1Metric
import copy
import re
import pandas as pd
import os
import io
import sys
import argparse
def compute_f1_score(predicted_answers, groundtruth_answer, exp_name="default"):
"""Evaluating F1 Score"""
print(len(predicted_answers), len(groundtruth_answer))
if len(predicted_answers) != len(groundtruth_answer):
groundtruth_answer = groundtruth_answer[:len(predicted_answers)]
guess_list = []
for guess in predicted_answers:
guess = guess.strip()
if "</s>" in guess:
guess = guess.replace("</s>", "")
guess_list.append(guess)
answer_list = []
for answer in groundtruth_answer:
answer_list.append(answer)
assert len(guess_list) == len(answer_list), \
"lengths of guess and answer are different!"
precision, recall, f1 = F1Metric.compute_all_pairs(guess_list, answer_list)
print('Method: %s; Precision: %.4f; recall: %.4f; f1: %.4f' % (
exp_name, precision, recall, f1))
return f1
def load_groundtruth_file(data_file):
"""Load ground truth answers from JSON file"""
with open(data_file, "r") as f:
examples = json.load(f)
data = []
for instance in examples:
if "answers" in instance:
answers = instance["answers"]
elif "answer" in instance:
if type(instance["answer"]) is str:
answers = [instance["answer"]]
elif type(instance["answer"]) is list:
answers = instance["answer"]
else:
answers = [str(instance["answer"])]
else:
raise ValueError("need to have answer or answers")
data.append(answers)
return data
def load_prediction(data_file):
"""Load predictions from text file"""
data = []
with open(data_file, "r") as f:
for line in f.readlines():
if "_on" in data_file or "_medium" in data_file or "_high" in data_file:
data.append(line.strip()[:300])
else:
data.append(line.strip())
return data
def evaluate_f1(ground_truth_file, prediction_file):
"""Evaluate F1 score for general QA datasets"""
groundtruth_answers = load_groundtruth_file(ground_truth_file)
# Special handling for inscit dataset
if "inscit" in ground_truth_file:
groundtruth_answers_update = []
for answers in groundtruth_answers:
answers_update = []
for ans in answers:
# Remove default answer added to inscit dataset
if ans != "Sorry. I cannot find the answer based on the context.":
answers_update.append(ans)
assert len(answers_update) > 0
groundtruth_answers_update.append(copy.deepcopy(answers_update))
groundtruth_answers = groundtruth_answers_update
predicted_answers = load_prediction(prediction_file)
# Special handling for quac and doqa datasets (unanswerable questions)
if "quac" in prediction_file or "doqa" in prediction_file:
predicted_answers_new = []
for pred in predicted_answers:
pred = pred.lower()
for keyphrase in unanswerable_keyphrases:
if "उत्तर नहीं" in pred:
pred = "क्षमा करें, मैं संदर्भ के आधार पर उत्तर नहीं ढूँढ पा रहा हूँ।"
break
predicted_answers_new.append(pred)
predicted_answers = predicted_answers_new
f1_score = compute_f1_score(predicted_answers, groundtruth_answers)
return f1_score
def evaluate_convfinqa(ground_truth_file, prediction_file):
"""
Evaluate ConvFinQA dataset with special numeric matching logic.
Since the model gives a long answer output, while the gold answer for ConvFinQA
are either an arithmetic formula or a final executed number.
We consider the output containing either the executed number or the arithmetic
formula as correct.
"""
def _is_float(string):
try:
float(string)
return True
except ValueError:
return False
with open(ground_truth_file, "r") as f:
gold_list = json.load(f)
groundtruth_answers = [item['exe_answer'] for item in gold_list]
groundtruth_answers_formula = [item['answers'][0] for item in gold_list]
# Last turn question_list
question_list = [item['messages'][-1]['content'] for item in gold_list]
predicted_answers = load_prediction(prediction_file)
print(len(predicted_answers), len(groundtruth_answers))
if len(predicted_answers) != len(groundtruth_answers):
groundtruth_answers = groundtruth_answers[:len(predicted_answers)]
count_exact_match = 0
for question, pred, gold, gold_formula in zip(question_list, predicted_answers,
groundtruth_answers, groundtruth_answers_formula):
original_pred = pred
# Convert 1,000,000 into 1000000
original_pred = original_pred.replace(",", "")
# Convert $10 million + $20 million into 10 + 20
original_pred = original_pred.replace("$", "").replace("million", "").replace(
"billion", "").replace("मिलियन", "").replace("बिलियन ", "")
# Convert 10 (2017) + 20 (2018) into 10 + 20
pattern = r'\((\b\w+\b)\)'
original_pred = re.sub(pattern, '', original_pred)
# Make sure each token only has one space in between
original_pred = " ".join(original_pred.split())
if str(gold) in original_pred:
count_exact_match += 1
elif str(gold_formula) in original_pred:
count_exact_match += 1
elif _is_float(gold) and (str(round(float(gold), 3)) in original_pred or
str(round(float(gold), 2)) in original_pred):
count_exact_match += 1
elif "percent" in question and (str(float(gold)*100) in original_pred or
str(round(float(gold)*100, 1)) in original_pred or
str(round(float(gold)*100, 2)) in original_pred):
count_exact_match += 1
elif str(gold).endswith(".0") and str(int(gold)) in original_pred:
# Gold is an integer like 80.0 then convert it into 80
count_exact_match += 1
elif "decrease" in original_pred and _is_float(gold) and gold < 0 and (
str(-1 * gold) in original_pred):
# For the case where model generates something like a decrease of 10 million,
# while gold is -10
count_exact_match += 1
accuracy = count_exact_match / len(predicted_answers)
print("accuracy of exact match: %.4f" % accuracy)
return accuracy
def separate_cannot_answer(ground_truth_file, prediction_file):
"""Separate answerable and unanswerable questions"""
# Load ground truth
with open(ground_truth_file, "r") as f:
groundtruth_answers = json.load(f)
# Load prediction
predicted_answers = load_prediction(prediction_file)
print(len(predicted_answers), len(groundtruth_answers))
if len(predicted_answers) != len(groundtruth_answers):
groundtruth_answers = groundtruth_answers[:len(predicted_answers)]
if "quac" in prediction_file:
"""
For answerable cases, we want to make sure the retrieved context list contains the gold chunk.
For QuAC dataset, we use top-5 retrieved contexts as inputs, quac_correct_retrieved_instance_idx_list
is the index list where the top-5 retrieved context contains the gold answer
"""
answerable_instance_idx_list = quac_correct_retrieved_instance_idx_list
else:
answerable_instance_idx_list = None
predicted_answers_new = []
for pred in predicted_answers:
pred = pred.lower()
for keyphrase in unanswerable_keyphrases:
if keyphrase in pred:
pred = "Sorry. I cannot find the answer based on the context."
break
predicted_answers_new.append(pred)
predicted_answers = predicted_answers_new
cannot_answer_idx_list = []
answerable_idx_list = []
if answerable_instance_idx_list:
count_idx = 0
for idx, item in enumerate(groundtruth_answers):
if 'answers' in item:
answer = item["answers"][0]
else:
answer = item['answer']
noanswer_response = "Sorry. I cannot find the answer based on the context."
if answer == noanswer_response:
cannot_answer_idx_list.append(idx)
continue
if answerable_instance_idx_list:
if count_idx in answerable_instance_idx_list:
answerable_idx_list.append(idx)
count_idx += 1
else:
answerable_idx_list.append(idx)
print("number of cannot answer cases: %d (out of %d)" % (len(cannot_answer_idx_list), len(groundtruth_answers)))
print("number of answerable cases: %d (out of %d)" % (len(answerable_idx_list), len(groundtruth_answers)))
return predicted_answers, cannot_answer_idx_list, answerable_idx_list
def get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list):
"""Calculate accuracy for answerable and unanswerable questions"""
# Cannot answer
noanswer_count = 0
for idx in cannot_answer_idx_list:
prediction = predicted_answers[idx]
prediction = prediction.lower()
if "sorry" in prediction and "cannot find the answer" in prediction:
noanswer_count += 1
cannot_answer_acc = noanswer_count / len(cannot_answer_idx_list) if len(cannot_answer_idx_list) > 0 else 0.0
print("accuracy of cannot answer cases: %.4f" % cannot_answer_acc)
# Answerable
answerable_count = 0
for idx in answerable_idx_list:
prediction = predicted_answers[idx]
prediction = prediction.lower()
if "sorry" in prediction and "cannot find the answer" in prediction:
continue
answerable_count += 1
answerable_acc = answerable_count / len(answerable_idx_list) if len(answerable_idx_list) > 0 else 0.0
print("accuracy of answerable cases: %.4f" % answerable_acc)
def evaluate_cannot_answer_acc(ground_truth_file, prediction_file):
"""Evaluate accuracy for answerable and unanswerable questions"""
predicted_answers, cannot_answer_idx_list, answerable_idx_list = \
separate_cannot_answer(ground_truth_file, prediction_file)
get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list)
def get_dataset_config(args):
"""
Returns configuration for all datasets using paths from args
Args:
args: Arguments object with dataset path configurations
Returns:
dict: Dataset configuration mapping
"""
return {
'doc2dial': {
'file_suffix': 'doc2dial',
'ground_truth_path': args.doc2dial_path,
'eval_function': evaluate_f1
},
'quac': {
'file_suffix': 'quac',
'ground_truth_path': args.quac_path,
'eval_function': evaluate_f1
},
'qrecc': {
'file_suffix': 'qrecc',
'ground_truth_path': args.qrecc_path,
'eval_function': evaluate_f1
},
'inscit': {
'file_suffix': 'inscit',
'ground_truth_path': args.inscit_path,
'eval_function': evaluate_f1
},
'hybridial': {
'file_suffix': 'hybridial',
'ground_truth_path': args.hybridial_path,
'eval_function': evaluate_f1
},
'doqa_cooking': {
'file_suffix': 'doqa_cooking',
'ground_truth_path': args.doqa_cooking_path,
'eval_function': evaluate_f1
},
'doqa_travel': {
'file_suffix': 'doqa_travel',
'ground_truth_path': args.doqa_travel_path,
'eval_function': evaluate_f1
},
'doqa_movies': {
'file_suffix': 'doqa_movies',
'ground_truth_path': args.doqa_movies_path,
'eval_function': evaluate_f1
},
'convfinqa': {
'file_suffix': 'convfinqa',
'ground_truth_path': args.convfinqa_path,
'eval_function': evaluate_convfinqa
}
}
def evaluate_single_dataset(dataset_name, prediction_file, ground_truth_file, eval_function):
"""
Evaluate a single dataset and return the score
Args:
dataset_name: Name of the dataset
prediction_file: Path to prediction file
ground_truth_file: Path to ground truth file
eval_function: Function to use for evaluation
Returns:
float: Evaluation score
"""
print("-" * 80)
print(f"Evaluating {dataset_name}")
print(f"Prediction file: {prediction_file}")
print(f"Ground truth file: {ground_truth_file}")
if not os.path.exists(prediction_file):
print(f"Warning: Prediction file not found: {prediction_file}")
return None
if not os.path.exists(ground_truth_file):
print(f"Warning: Ground truth file not found: {ground_truth_file}")
return None
try:
# Capture stdout to extract score
buffer = io.StringIO()
sys.stdout = buffer
score_value = eval_function(ground_truth_file, prediction_file)
sys.stdout = sys.__stdout__
# If the function already returns the score, use it
if score_value is not None:
return float(score_value)
# Otherwise, parse from output
output = buffer.getvalue()
if "f1:" in output:
score = output.split("f1:")[-1].strip()
elif "accuracy of exact match:" in output:
score = output.split("accuracy of exact match:")[-1].strip()
else:
print(f"Warning: Could not parse score from output: {output}")
return None
return float(score)
except Exception as e:
print(f"Error evaluating {dataset_name}: {e}")
sys.stdout = sys.__stdout__
return None
def evaluate_single_model(model_name, results_dir, data_path, datasets, args):
"""
Evaluate a single model across all specified datasets
Args:
model_name: Name of the model
results_dir: Directory containing model results
data_path: Path to ground truth data
datasets: List of dataset names to evaluate
args: Arguments object with configuration
Returns:
dict: Dictionary mapping dataset names to scores
"""
print(f"\n{'='*80}")
print(f"Evaluating Model: {model_name}")
print(f"{'='*80}\n")
output_dir = os.path.join(results_dir, model_name)
dataset_config = get_dataset_config(args)
scores = {'model': model_name}
for dataset_name in datasets:
if dataset_name not in dataset_config:
print(f"Warning: Unknown dataset {dataset_name}, skipping...")
continue
config = dataset_config[dataset_name]
prediction_file = os.path.join(output_dir, f"{config['file_suffix']}.txt")
ground_truth_file = os.path.join(data_path, config['ground_truth_path'])
score = evaluate_single_dataset(
dataset_name,
prediction_file,
ground_truth_file,
config['eval_function']
)
scores[dataset_name] = score
return scores
def evaluate_all_models(results_dir, data_path, datasets, args, output_csv=None):
"""
Evaluate all models in the results directory
Args:
results_dir: Directory containing model results (subdirectories for each model)
data_path: Path to ground truth data directory
datasets: List of dataset names to evaluate
args: Arguments object with configuration
output_csv: Path to output CSV file (default: <results_dir>/scores.csv)
Returns:
pd.DataFrame: DataFrame containing all evaluation scores
"""
# Get all model subdirectories
model_names = [d for d in os.listdir(results_dir)
if os.path.isdir(os.path.join(results_dir, d))]
if not model_names:
print(f"Warning: No model directories found in {results_dir}")
return pd.DataFrame()
print(f"\nFound {len(model_names)} model(s): {model_names}\n")
# Initialize DataFrame
columns = ['model'] + datasets
df = pd.DataFrame(columns=columns)
# Evaluate each model
all_scores = []
for model_name in model_names:
scores = evaluate_single_model(model_name, results_dir, data_path, datasets, args)
all_scores.append(scores)
# Convert to DataFrame
df = pd.DataFrame(all_scores)
# Calculate average across datasets (excluding model name column)
numeric_cols = [col for col in df.columns if col != 'model']
df['average'] = df[numeric_cols].mean(axis=1, skipna=True)
# Save to CSV
if output_csv is None:
output_csv = os.path.join(results_dir, 'scores.csv')
df.to_csv(output_csv, index=False)
print(f"\nScores saved to: {output_csv}")
print("\nFinal Results:")
print(df.to_string(index=False))
return df
def main():
"""Main function to run evaluation pipeline"""
args = get_args_scores()
# Evaluate all models
df = evaluate_all_models(
results_dir=args.results_dir,
data_path=args.data_path,
datasets=args.datasets,
args=args,
output_csv=args.output_csv
)
return df
if __name__ == "__main__":
main()
|