Datasets:

Modalities:
Text
Formats:
json
Languages:
Hindi
ArXiv:
Libraries:
Datasets
pandas
License:
ChatRAG-Hi / evaluation /get_scores.py
ravirajoshi's picture
Upload 10 files
e20ef19 verified
#!/usr/bin/env python3
from evaluation_utils import quac_correct_retrieved_instance_idx_list
from evaluation_utils import unanswerable_keyphrases
from arguments import get_args_scores
import json
from metrics import F1Metric
import copy
import re
import pandas as pd
import os
import io
import sys
import argparse
def compute_f1_score(predicted_answers, groundtruth_answer, exp_name="default"):
"""Evaluating F1 Score"""
print(len(predicted_answers), len(groundtruth_answer))
if len(predicted_answers) != len(groundtruth_answer):
groundtruth_answer = groundtruth_answer[:len(predicted_answers)]
guess_list = []
for guess in predicted_answers:
guess = guess.strip()
if "</s>" in guess:
guess = guess.replace("</s>", "")
guess_list.append(guess)
answer_list = []
for answer in groundtruth_answer:
answer_list.append(answer)
assert len(guess_list) == len(answer_list), \
"lengths of guess and answer are different!"
precision, recall, f1 = F1Metric.compute_all_pairs(guess_list, answer_list)
print('Method: %s; Precision: %.4f; recall: %.4f; f1: %.4f' % (
exp_name, precision, recall, f1))
return f1
def load_groundtruth_file(data_file):
"""Load ground truth answers from JSON file"""
with open(data_file, "r") as f:
examples = json.load(f)
data = []
for instance in examples:
if "answers" in instance:
answers = instance["answers"]
elif "answer" in instance:
if type(instance["answer"]) is str:
answers = [instance["answer"]]
elif type(instance["answer"]) is list:
answers = instance["answer"]
else:
answers = [str(instance["answer"])]
else:
raise ValueError("need to have answer or answers")
data.append(answers)
return data
def load_prediction(data_file):
"""Load predictions from text file"""
data = []
with open(data_file, "r") as f:
for line in f.readlines():
if "_on" in data_file or "_medium" in data_file or "_high" in data_file:
data.append(line.strip()[:300])
else:
data.append(line.strip())
return data
def evaluate_f1(ground_truth_file, prediction_file):
"""Evaluate F1 score for general QA datasets"""
groundtruth_answers = load_groundtruth_file(ground_truth_file)
# Special handling for inscit dataset
if "inscit" in ground_truth_file:
groundtruth_answers_update = []
for answers in groundtruth_answers:
answers_update = []
for ans in answers:
# Remove default answer added to inscit dataset
if ans != "Sorry. I cannot find the answer based on the context.":
answers_update.append(ans)
assert len(answers_update) > 0
groundtruth_answers_update.append(copy.deepcopy(answers_update))
groundtruth_answers = groundtruth_answers_update
predicted_answers = load_prediction(prediction_file)
# Special handling for quac and doqa datasets (unanswerable questions)
if "quac" in prediction_file or "doqa" in prediction_file:
predicted_answers_new = []
for pred in predicted_answers:
pred = pred.lower()
for keyphrase in unanswerable_keyphrases:
if "उत्तर नहीं" in pred:
pred = "क्षमा करें, मैं संदर्भ के आधार पर उत्तर नहीं ढूँढ पा रहा हूँ।"
break
predicted_answers_new.append(pred)
predicted_answers = predicted_answers_new
f1_score = compute_f1_score(predicted_answers, groundtruth_answers)
return f1_score
def evaluate_convfinqa(ground_truth_file, prediction_file):
"""
Evaluate ConvFinQA dataset with special numeric matching logic.
Since the model gives a long answer output, while the gold answer for ConvFinQA
are either an arithmetic formula or a final executed number.
We consider the output containing either the executed number or the arithmetic
formula as correct.
"""
def _is_float(string):
try:
float(string)
return True
except ValueError:
return False
with open(ground_truth_file, "r") as f:
gold_list = json.load(f)
groundtruth_answers = [item['exe_answer'] for item in gold_list]
groundtruth_answers_formula = [item['answers'][0] for item in gold_list]
# Last turn question_list
question_list = [item['messages'][-1]['content'] for item in gold_list]
predicted_answers = load_prediction(prediction_file)
print(len(predicted_answers), len(groundtruth_answers))
if len(predicted_answers) != len(groundtruth_answers):
groundtruth_answers = groundtruth_answers[:len(predicted_answers)]
count_exact_match = 0
for question, pred, gold, gold_formula in zip(question_list, predicted_answers,
groundtruth_answers, groundtruth_answers_formula):
original_pred = pred
# Convert 1,000,000 into 1000000
original_pred = original_pred.replace(",", "")
# Convert $10 million + $20 million into 10 + 20
original_pred = original_pred.replace("$", "").replace("million", "").replace(
"billion", "").replace("मिलियन", "").replace("बिलियन ", "")
# Convert 10 (2017) + 20 (2018) into 10 + 20
pattern = r'\((\b\w+\b)\)'
original_pred = re.sub(pattern, '', original_pred)
# Make sure each token only has one space in between
original_pred = " ".join(original_pred.split())
if str(gold) in original_pred:
count_exact_match += 1
elif str(gold_formula) in original_pred:
count_exact_match += 1
elif _is_float(gold) and (str(round(float(gold), 3)) in original_pred or
str(round(float(gold), 2)) in original_pred):
count_exact_match += 1
elif "percent" in question and (str(float(gold)*100) in original_pred or
str(round(float(gold)*100, 1)) in original_pred or
str(round(float(gold)*100, 2)) in original_pred):
count_exact_match += 1
elif str(gold).endswith(".0") and str(int(gold)) in original_pred:
# Gold is an integer like 80.0 then convert it into 80
count_exact_match += 1
elif "decrease" in original_pred and _is_float(gold) and gold < 0 and (
str(-1 * gold) in original_pred):
# For the case where model generates something like a decrease of 10 million,
# while gold is -10
count_exact_match += 1
accuracy = count_exact_match / len(predicted_answers)
print("accuracy of exact match: %.4f" % accuracy)
return accuracy
def separate_cannot_answer(ground_truth_file, prediction_file):
"""Separate answerable and unanswerable questions"""
# Load ground truth
with open(ground_truth_file, "r") as f:
groundtruth_answers = json.load(f)
# Load prediction
predicted_answers = load_prediction(prediction_file)
print(len(predicted_answers), len(groundtruth_answers))
if len(predicted_answers) != len(groundtruth_answers):
groundtruth_answers = groundtruth_answers[:len(predicted_answers)]
if "quac" in prediction_file:
"""
For answerable cases, we want to make sure the retrieved context list contains the gold chunk.
For QuAC dataset, we use top-5 retrieved contexts as inputs, quac_correct_retrieved_instance_idx_list
is the index list where the top-5 retrieved context contains the gold answer
"""
answerable_instance_idx_list = quac_correct_retrieved_instance_idx_list
else:
answerable_instance_idx_list = None
predicted_answers_new = []
for pred in predicted_answers:
pred = pred.lower()
for keyphrase in unanswerable_keyphrases:
if keyphrase in pred:
pred = "Sorry. I cannot find the answer based on the context."
break
predicted_answers_new.append(pred)
predicted_answers = predicted_answers_new
cannot_answer_idx_list = []
answerable_idx_list = []
if answerable_instance_idx_list:
count_idx = 0
for idx, item in enumerate(groundtruth_answers):
if 'answers' in item:
answer = item["answers"][0]
else:
answer = item['answer']
noanswer_response = "Sorry. I cannot find the answer based on the context."
if answer == noanswer_response:
cannot_answer_idx_list.append(idx)
continue
if answerable_instance_idx_list:
if count_idx in answerable_instance_idx_list:
answerable_idx_list.append(idx)
count_idx += 1
else:
answerable_idx_list.append(idx)
print("number of cannot answer cases: %d (out of %d)" % (len(cannot_answer_idx_list), len(groundtruth_answers)))
print("number of answerable cases: %d (out of %d)" % (len(answerable_idx_list), len(groundtruth_answers)))
return predicted_answers, cannot_answer_idx_list, answerable_idx_list
def get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list):
"""Calculate accuracy for answerable and unanswerable questions"""
# Cannot answer
noanswer_count = 0
for idx in cannot_answer_idx_list:
prediction = predicted_answers[idx]
prediction = prediction.lower()
if "sorry" in prediction and "cannot find the answer" in prediction:
noanswer_count += 1
cannot_answer_acc = noanswer_count / len(cannot_answer_idx_list) if len(cannot_answer_idx_list) > 0 else 0.0
print("accuracy of cannot answer cases: %.4f" % cannot_answer_acc)
# Answerable
answerable_count = 0
for idx in answerable_idx_list:
prediction = predicted_answers[idx]
prediction = prediction.lower()
if "sorry" in prediction and "cannot find the answer" in prediction:
continue
answerable_count += 1
answerable_acc = answerable_count / len(answerable_idx_list) if len(answerable_idx_list) > 0 else 0.0
print("accuracy of answerable cases: %.4f" % answerable_acc)
def evaluate_cannot_answer_acc(ground_truth_file, prediction_file):
"""Evaluate accuracy for answerable and unanswerable questions"""
predicted_answers, cannot_answer_idx_list, answerable_idx_list = \
separate_cannot_answer(ground_truth_file, prediction_file)
get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list)
def get_dataset_config(args):
"""
Returns configuration for all datasets using paths from args
Args:
args: Arguments object with dataset path configurations
Returns:
dict: Dataset configuration mapping
"""
return {
'doc2dial': {
'file_suffix': 'doc2dial',
'ground_truth_path': args.doc2dial_path,
'eval_function': evaluate_f1
},
'quac': {
'file_suffix': 'quac',
'ground_truth_path': args.quac_path,
'eval_function': evaluate_f1
},
'qrecc': {
'file_suffix': 'qrecc',
'ground_truth_path': args.qrecc_path,
'eval_function': evaluate_f1
},
'inscit': {
'file_suffix': 'inscit',
'ground_truth_path': args.inscit_path,
'eval_function': evaluate_f1
},
'hybridial': {
'file_suffix': 'hybridial',
'ground_truth_path': args.hybridial_path,
'eval_function': evaluate_f1
},
'doqa_cooking': {
'file_suffix': 'doqa_cooking',
'ground_truth_path': args.doqa_cooking_path,
'eval_function': evaluate_f1
},
'doqa_travel': {
'file_suffix': 'doqa_travel',
'ground_truth_path': args.doqa_travel_path,
'eval_function': evaluate_f1
},
'doqa_movies': {
'file_suffix': 'doqa_movies',
'ground_truth_path': args.doqa_movies_path,
'eval_function': evaluate_f1
},
'convfinqa': {
'file_suffix': 'convfinqa',
'ground_truth_path': args.convfinqa_path,
'eval_function': evaluate_convfinqa
}
}
def evaluate_single_dataset(dataset_name, prediction_file, ground_truth_file, eval_function):
"""
Evaluate a single dataset and return the score
Args:
dataset_name: Name of the dataset
prediction_file: Path to prediction file
ground_truth_file: Path to ground truth file
eval_function: Function to use for evaluation
Returns:
float: Evaluation score
"""
print("-" * 80)
print(f"Evaluating {dataset_name}")
print(f"Prediction file: {prediction_file}")
print(f"Ground truth file: {ground_truth_file}")
if not os.path.exists(prediction_file):
print(f"Warning: Prediction file not found: {prediction_file}")
return None
if not os.path.exists(ground_truth_file):
print(f"Warning: Ground truth file not found: {ground_truth_file}")
return None
try:
# Capture stdout to extract score
buffer = io.StringIO()
sys.stdout = buffer
score_value = eval_function(ground_truth_file, prediction_file)
sys.stdout = sys.__stdout__
# If the function already returns the score, use it
if score_value is not None:
return float(score_value)
# Otherwise, parse from output
output = buffer.getvalue()
if "f1:" in output:
score = output.split("f1:")[-1].strip()
elif "accuracy of exact match:" in output:
score = output.split("accuracy of exact match:")[-1].strip()
else:
print(f"Warning: Could not parse score from output: {output}")
return None
return float(score)
except Exception as e:
print(f"Error evaluating {dataset_name}: {e}")
sys.stdout = sys.__stdout__
return None
def evaluate_single_model(model_name, results_dir, data_path, datasets, args):
"""
Evaluate a single model across all specified datasets
Args:
model_name: Name of the model
results_dir: Directory containing model results
data_path: Path to ground truth data
datasets: List of dataset names to evaluate
args: Arguments object with configuration
Returns:
dict: Dictionary mapping dataset names to scores
"""
print(f"\n{'='*80}")
print(f"Evaluating Model: {model_name}")
print(f"{'='*80}\n")
output_dir = os.path.join(results_dir, model_name)
dataset_config = get_dataset_config(args)
scores = {'model': model_name}
for dataset_name in datasets:
if dataset_name not in dataset_config:
print(f"Warning: Unknown dataset {dataset_name}, skipping...")
continue
config = dataset_config[dataset_name]
prediction_file = os.path.join(output_dir, f"{config['file_suffix']}.txt")
ground_truth_file = os.path.join(data_path, config['ground_truth_path'])
score = evaluate_single_dataset(
dataset_name,
prediction_file,
ground_truth_file,
config['eval_function']
)
scores[dataset_name] = score
return scores
def evaluate_all_models(results_dir, data_path, datasets, args, output_csv=None):
"""
Evaluate all models in the results directory
Args:
results_dir: Directory containing model results (subdirectories for each model)
data_path: Path to ground truth data directory
datasets: List of dataset names to evaluate
args: Arguments object with configuration
output_csv: Path to output CSV file (default: <results_dir>/scores.csv)
Returns:
pd.DataFrame: DataFrame containing all evaluation scores
"""
# Get all model subdirectories
model_names = [d for d in os.listdir(results_dir)
if os.path.isdir(os.path.join(results_dir, d))]
if not model_names:
print(f"Warning: No model directories found in {results_dir}")
return pd.DataFrame()
print(f"\nFound {len(model_names)} model(s): {model_names}\n")
# Initialize DataFrame
columns = ['model'] + datasets
df = pd.DataFrame(columns=columns)
# Evaluate each model
all_scores = []
for model_name in model_names:
scores = evaluate_single_model(model_name, results_dir, data_path, datasets, args)
all_scores.append(scores)
# Convert to DataFrame
df = pd.DataFrame(all_scores)
# Calculate average across datasets (excluding model name column)
numeric_cols = [col for col in df.columns if col != 'model']
df['average'] = df[numeric_cols].mean(axis=1, skipna=True)
# Save to CSV
if output_csv is None:
output_csv = os.path.join(results_dir, 'scores.csv')
df.to_csv(output_csv, index=False)
print(f"\nScores saved to: {output_csv}")
print("\nFinal Results:")
print(df.to_string(index=False))
return df
def main():
"""Main function to run evaluation pipeline"""
args = get_args_scores()
# Evaluate all models
df = evaluate_all_models(
results_dir=args.results_dir,
data_path=args.data_path,
datasets=args.datasets,
args=args,
output_csv=args.output_csv
)
return df
if __name__ == "__main__":
main()