#!/bin/bash MODEL_ID="nvidia/Nemotron-4-Mini-Hindi-4B-Instruct" DATA_FOLDER="ChatRAG-Hi/data" OUTPUT_FOLDER="ChatRAG-Hi/results" echo "Running full pipeline for all datasets" python run_all_evaluation.py \ --mode full \ --model-id "$MODEL_ID" \ --data-folder "$DATA_FOLDER" \ --output-folder "$OUTPUT_FOLDER" \ --all-datasets \ --device cuda \ --num-ctx 5 \ --max-tokens 64 \ --limit 10 echo "Evaluate specific dataset subset" python run_all_evaluation.py \ --mode full \ --model-id "$MODEL_ID" \ --data-folder "$DATA_FOLDER" \ --output-folder "$OUTPUT_FOLDER" \ --datasets doc2dial quac inscit \ --device cuda echo "Evaluation only (predictions already exist)" python run_all_evaluation.py \ --mode evaluation \ --model-id "$MODEL_ID" \ --data-folder "$DATA_FOLDER" \ --output-folder "$OUTPUT_FOLDER" \ --all-datasets echo "Direct evaluation with get_scores.py" python get_scores.py \ --results-dir "$OUTPUT_FOLDER" \ --data-path "$DATA_FOLDER" \ --datasets doc2dial quac qrecc inscit hybridial doqa_cooking doqa_travel doqa_movies convfinqa \ --output-csv "${OUTPUT_FOLDER}/scores.csv"