#!/usr/bin/env python3 from evaluation_utils import quac_correct_retrieved_instance_idx_list from evaluation_utils import unanswerable_keyphrases from arguments import get_args_scores import json from metrics import F1Metric import copy import re import pandas as pd import os import io import sys import argparse def compute_f1_score(predicted_answers, groundtruth_answer, exp_name="default"): """Evaluating F1 Score""" print(len(predicted_answers), len(groundtruth_answer)) if len(predicted_answers) != len(groundtruth_answer): groundtruth_answer = groundtruth_answer[:len(predicted_answers)] guess_list = [] for guess in predicted_answers: guess = guess.strip() if "" in guess: guess = guess.replace("", "") guess_list.append(guess) answer_list = [] for answer in groundtruth_answer: answer_list.append(answer) assert len(guess_list) == len(answer_list), \ "lengths of guess and answer are different!" precision, recall, f1 = F1Metric.compute_all_pairs(guess_list, answer_list) print('Method: %s; Precision: %.4f; recall: %.4f; f1: %.4f' % ( exp_name, precision, recall, f1)) return f1 def load_groundtruth_file(data_file): """Load ground truth answers from JSON file""" with open(data_file, "r") as f: examples = json.load(f) data = [] for instance in examples: if "answers" in instance: answers = instance["answers"] elif "answer" in instance: if type(instance["answer"]) is str: answers = [instance["answer"]] elif type(instance["answer"]) is list: answers = instance["answer"] else: answers = [str(instance["answer"])] else: raise ValueError("need to have answer or answers") data.append(answers) return data def load_prediction(data_file): """Load predictions from text file""" data = [] with open(data_file, "r") as f: for line in f.readlines(): if "_on" in data_file or "_medium" in data_file or "_high" in data_file: data.append(line.strip()[:300]) else: data.append(line.strip()) return data def evaluate_f1(ground_truth_file, prediction_file): """Evaluate F1 score for general QA datasets""" groundtruth_answers = load_groundtruth_file(ground_truth_file) # Special handling for inscit dataset if "inscit" in ground_truth_file: groundtruth_answers_update = [] for answers in groundtruth_answers: answers_update = [] for ans in answers: # Remove default answer added to inscit dataset if ans != "Sorry. I cannot find the answer based on the context.": answers_update.append(ans) assert len(answers_update) > 0 groundtruth_answers_update.append(copy.deepcopy(answers_update)) groundtruth_answers = groundtruth_answers_update predicted_answers = load_prediction(prediction_file) # Special handling for quac and doqa datasets (unanswerable questions) if "quac" in prediction_file or "doqa" in prediction_file: predicted_answers_new = [] for pred in predicted_answers: pred = pred.lower() for keyphrase in unanswerable_keyphrases: if "उत्तर नहीं" in pred: pred = "क्षमा करें, मैं संदर्भ के आधार पर उत्तर नहीं ढूँढ पा रहा हूँ।" break predicted_answers_new.append(pred) predicted_answers = predicted_answers_new f1_score = compute_f1_score(predicted_answers, groundtruth_answers) return f1_score def evaluate_convfinqa(ground_truth_file, prediction_file): """ Evaluate ConvFinQA dataset with special numeric matching logic. Since the model gives a long answer output, while the gold answer for ConvFinQA are either an arithmetic formula or a final executed number. We consider the output containing either the executed number or the arithmetic formula as correct. """ def _is_float(string): try: float(string) return True except ValueError: return False with open(ground_truth_file, "r") as f: gold_list = json.load(f) groundtruth_answers = [item['exe_answer'] for item in gold_list] groundtruth_answers_formula = [item['answers'][0] for item in gold_list] # Last turn question_list question_list = [item['messages'][-1]['content'] for item in gold_list] predicted_answers = load_prediction(prediction_file) print(len(predicted_answers), len(groundtruth_answers)) if len(predicted_answers) != len(groundtruth_answers): groundtruth_answers = groundtruth_answers[:len(predicted_answers)] count_exact_match = 0 for question, pred, gold, gold_formula in zip(question_list, predicted_answers, groundtruth_answers, groundtruth_answers_formula): original_pred = pred # Convert 1,000,000 into 1000000 original_pred = original_pred.replace(",", "") # Convert $10 million + $20 million into 10 + 20 original_pred = original_pred.replace("$", "").replace("million", "").replace( "billion", "").replace("मिलियन", "").replace("बिलियन ", "") # Convert 10 (2017) + 20 (2018) into 10 + 20 pattern = r'\((\b\w+\b)\)' original_pred = re.sub(pattern, '', original_pred) # Make sure each token only has one space in between original_pred = " ".join(original_pred.split()) if str(gold) in original_pred: count_exact_match += 1 elif str(gold_formula) in original_pred: count_exact_match += 1 elif _is_float(gold) and (str(round(float(gold), 3)) in original_pred or str(round(float(gold), 2)) in original_pred): count_exact_match += 1 elif "percent" in question and (str(float(gold)*100) in original_pred or str(round(float(gold)*100, 1)) in original_pred or str(round(float(gold)*100, 2)) in original_pred): count_exact_match += 1 elif str(gold).endswith(".0") and str(int(gold)) in original_pred: # Gold is an integer like 80.0 then convert it into 80 count_exact_match += 1 elif "decrease" in original_pred and _is_float(gold) and gold < 0 and ( str(-1 * gold) in original_pred): # For the case where model generates something like a decrease of 10 million, # while gold is -10 count_exact_match += 1 accuracy = count_exact_match / len(predicted_answers) print("accuracy of exact match: %.4f" % accuracy) return accuracy def separate_cannot_answer(ground_truth_file, prediction_file): """Separate answerable and unanswerable questions""" # Load ground truth with open(ground_truth_file, "r") as f: groundtruth_answers = json.load(f) # Load prediction predicted_answers = load_prediction(prediction_file) print(len(predicted_answers), len(groundtruth_answers)) if len(predicted_answers) != len(groundtruth_answers): groundtruth_answers = groundtruth_answers[:len(predicted_answers)] if "quac" in prediction_file: """ For answerable cases, we want to make sure the retrieved context list contains the gold chunk. For QuAC dataset, we use top-5 retrieved contexts as inputs, quac_correct_retrieved_instance_idx_list is the index list where the top-5 retrieved context contains the gold answer """ answerable_instance_idx_list = quac_correct_retrieved_instance_idx_list else: answerable_instance_idx_list = None predicted_answers_new = [] for pred in predicted_answers: pred = pred.lower() for keyphrase in unanswerable_keyphrases: if keyphrase in pred: pred = "Sorry. I cannot find the answer based on the context." break predicted_answers_new.append(pred) predicted_answers = predicted_answers_new cannot_answer_idx_list = [] answerable_idx_list = [] if answerable_instance_idx_list: count_idx = 0 for idx, item in enumerate(groundtruth_answers): if 'answers' in item: answer = item["answers"][0] else: answer = item['answer'] noanswer_response = "Sorry. I cannot find the answer based on the context." if answer == noanswer_response: cannot_answer_idx_list.append(idx) continue if answerable_instance_idx_list: if count_idx in answerable_instance_idx_list: answerable_idx_list.append(idx) count_idx += 1 else: answerable_idx_list.append(idx) print("number of cannot answer cases: %d (out of %d)" % (len(cannot_answer_idx_list), len(groundtruth_answers))) print("number of answerable cases: %d (out of %d)" % (len(answerable_idx_list), len(groundtruth_answers))) return predicted_answers, cannot_answer_idx_list, answerable_idx_list def get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list): """Calculate accuracy for answerable and unanswerable questions""" # Cannot answer noanswer_count = 0 for idx in cannot_answer_idx_list: prediction = predicted_answers[idx] prediction = prediction.lower() if "sorry" in prediction and "cannot find the answer" in prediction: noanswer_count += 1 cannot_answer_acc = noanswer_count / len(cannot_answer_idx_list) if len(cannot_answer_idx_list) > 0 else 0.0 print("accuracy of cannot answer cases: %.4f" % cannot_answer_acc) # Answerable answerable_count = 0 for idx in answerable_idx_list: prediction = predicted_answers[idx] prediction = prediction.lower() if "sorry" in prediction and "cannot find the answer" in prediction: continue answerable_count += 1 answerable_acc = answerable_count / len(answerable_idx_list) if len(answerable_idx_list) > 0 else 0.0 print("accuracy of answerable cases: %.4f" % answerable_acc) def evaluate_cannot_answer_acc(ground_truth_file, prediction_file): """Evaluate accuracy for answerable and unanswerable questions""" predicted_answers, cannot_answer_idx_list, answerable_idx_list = \ separate_cannot_answer(ground_truth_file, prediction_file) get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list) def get_dataset_config(args): """ Returns configuration for all datasets using paths from args Args: args: Arguments object with dataset path configurations Returns: dict: Dataset configuration mapping """ return { 'doc2dial': { 'file_suffix': 'doc2dial', 'ground_truth_path': args.doc2dial_path, 'eval_function': evaluate_f1 }, 'quac': { 'file_suffix': 'quac', 'ground_truth_path': args.quac_path, 'eval_function': evaluate_f1 }, 'qrecc': { 'file_suffix': 'qrecc', 'ground_truth_path': args.qrecc_path, 'eval_function': evaluate_f1 }, 'inscit': { 'file_suffix': 'inscit', 'ground_truth_path': args.inscit_path, 'eval_function': evaluate_f1 }, 'hybridial': { 'file_suffix': 'hybridial', 'ground_truth_path': args.hybridial_path, 'eval_function': evaluate_f1 }, 'doqa_cooking': { 'file_suffix': 'doqa_cooking', 'ground_truth_path': args.doqa_cooking_path, 'eval_function': evaluate_f1 }, 'doqa_travel': { 'file_suffix': 'doqa_travel', 'ground_truth_path': args.doqa_travel_path, 'eval_function': evaluate_f1 }, 'doqa_movies': { 'file_suffix': 'doqa_movies', 'ground_truth_path': args.doqa_movies_path, 'eval_function': evaluate_f1 }, 'convfinqa': { 'file_suffix': 'convfinqa', 'ground_truth_path': args.convfinqa_path, 'eval_function': evaluate_convfinqa } } def evaluate_single_dataset(dataset_name, prediction_file, ground_truth_file, eval_function): """ Evaluate a single dataset and return the score Args: dataset_name: Name of the dataset prediction_file: Path to prediction file ground_truth_file: Path to ground truth file eval_function: Function to use for evaluation Returns: float: Evaluation score """ print("-" * 80) print(f"Evaluating {dataset_name}") print(f"Prediction file: {prediction_file}") print(f"Ground truth file: {ground_truth_file}") if not os.path.exists(prediction_file): print(f"Warning: Prediction file not found: {prediction_file}") return None if not os.path.exists(ground_truth_file): print(f"Warning: Ground truth file not found: {ground_truth_file}") return None try: # Capture stdout to extract score buffer = io.StringIO() sys.stdout = buffer score_value = eval_function(ground_truth_file, prediction_file) sys.stdout = sys.__stdout__ # If the function already returns the score, use it if score_value is not None: return float(score_value) # Otherwise, parse from output output = buffer.getvalue() if "f1:" in output: score = output.split("f1:")[-1].strip() elif "accuracy of exact match:" in output: score = output.split("accuracy of exact match:")[-1].strip() else: print(f"Warning: Could not parse score from output: {output}") return None return float(score) except Exception as e: print(f"Error evaluating {dataset_name}: {e}") sys.stdout = sys.__stdout__ return None def evaluate_single_model(model_name, results_dir, data_path, datasets, args): """ Evaluate a single model across all specified datasets Args: model_name: Name of the model results_dir: Directory containing model results data_path: Path to ground truth data datasets: List of dataset names to evaluate args: Arguments object with configuration Returns: dict: Dictionary mapping dataset names to scores """ print(f"\n{'='*80}") print(f"Evaluating Model: {model_name}") print(f"{'='*80}\n") output_dir = os.path.join(results_dir, model_name) dataset_config = get_dataset_config(args) scores = {'model': model_name} for dataset_name in datasets: if dataset_name not in dataset_config: print(f"Warning: Unknown dataset {dataset_name}, skipping...") continue config = dataset_config[dataset_name] prediction_file = os.path.join(output_dir, f"{config['file_suffix']}.txt") ground_truth_file = os.path.join(data_path, config['ground_truth_path']) score = evaluate_single_dataset( dataset_name, prediction_file, ground_truth_file, config['eval_function'] ) scores[dataset_name] = score return scores def evaluate_all_models(results_dir, data_path, datasets, args, output_csv=None): """ Evaluate all models in the results directory Args: results_dir: Directory containing model results (subdirectories for each model) data_path: Path to ground truth data directory datasets: List of dataset names to evaluate args: Arguments object with configuration output_csv: Path to output CSV file (default: /scores.csv) Returns: pd.DataFrame: DataFrame containing all evaluation scores """ # Get all model subdirectories model_names = [d for d in os.listdir(results_dir) if os.path.isdir(os.path.join(results_dir, d))] if not model_names: print(f"Warning: No model directories found in {results_dir}") return pd.DataFrame() print(f"\nFound {len(model_names)} model(s): {model_names}\n") # Initialize DataFrame columns = ['model'] + datasets df = pd.DataFrame(columns=columns) # Evaluate each model all_scores = [] for model_name in model_names: scores = evaluate_single_model(model_name, results_dir, data_path, datasets, args) all_scores.append(scores) # Convert to DataFrame df = pd.DataFrame(all_scores) # Calculate average across datasets (excluding model name column) numeric_cols = [col for col in df.columns if col != 'model'] df['average'] = df[numeric_cols].mean(axis=1, skipna=True) # Save to CSV if output_csv is None: output_csv = os.path.join(results_dir, 'scores.csv') df.to_csv(output_csv, index=False) print(f"\nScores saved to: {output_csv}") print("\nFinal Results:") print(df.to_string(index=False)) return df def main(): """Main function to run evaluation pipeline""" args = get_args_scores() # Evaluate all models df = evaluate_all_models( results_dir=args.results_dir, data_path=args.data_path, datasets=args.datasets, args=args, output_csv=args.output_csv ) return df if __name__ == "__main__": main()