#!/usr/bin/env python3 """ This script provides a unified interface to: 1. Run inference for all datasets using HuggingFace models 2. Evaluate all predictions and generate scores """ import os import sys import argparse import subprocess from typing import List, Optional import pandas as pd ALL_DATASETS = [ 'doc2dial', 'quac', 'qrecc', 'inscit', 'hybridial', 'doqa_cooking', 'doqa_travel', 'doqa_movies', 'convfinqa' ] def run_inference_for_dataset( model_id: str, dataset: str, data_folder: str, output_folder: str, device: str = 'cuda', num_ctx: int = 5, max_tokens: int = 64, expected_samples: int = 500, limit: Optional[int] = None ) -> bool: """ Run inference for a single dataset Args: model_id: Model identifier or path dataset: Dataset name data_folder: Path to data folder output_folder: Path to output folder device: Device to run on (cuda/cpu) num_ctx: Number of contexts max_tokens: Maximum number of tokens to generate expected_samples: Expected number of samples limit: Limit number of samples to process Returns: bool: True if successful, False otherwise """ print(f"\n{'='*80}") print(f"Running inference for dataset: {dataset}") print(f"{'='*80}\n") cmd = [ 'python', 'run_generation_hf.py', '--model-id', model_id, '--data-folder', data_folder, '--output-folder', output_folder, '--eval-dataset', dataset, '--device', device, '--num-ctx', str(num_ctx), '--max-tokens', str(max_tokens), '--expected-samples', str(expected_samples) ] if limit is not None: cmd.extend(['--limit', str(limit)]) try: result = subprocess.run(cmd, check=True, capture_output=False, text=True) print(f"✓ Inference completed for {dataset}") return True except subprocess.CalledProcessError as e: print(f"✗ Error running inference for {dataset}: {e}") return False except Exception as e: print(f"✗ Unexpected error for {dataset}: {e}") return False def run_inference_for_all_datasets( model_id: str, datasets: List[str], data_folder: str, output_folder: str, device: str = 'cuda', num_ctx: int = 5, max_tokens: int = 64, expected_samples: int = 500, limit: Optional[int] = None ) -> dict: """ Run inference for all specified datasets Args: model_id: Model identifier or path datasets: List of dataset names data_folder: Path to data folder output_folder: Path to output folder device: Device to run on (cuda/cpu) num_ctx: Number of contexts max_tokens: Maximum number of tokens to generate expected_samples: Expected number of samples limit: Limit number of samples to process Returns: dict: Dictionary mapping dataset names to success status """ print(f"\n{'#'*80}") print(f"# Running Inference for Model: {model_id}") print(f"# Total Datasets: {len(datasets)}") print(f"{'#'*80}\n") results = {} for dataset in datasets: success = run_inference_for_dataset( model_id=model_id, dataset=dataset, data_folder=data_folder, output_folder=output_folder, device=device, num_ctx=num_ctx, max_tokens=max_tokens, expected_samples=expected_samples, limit=limit ) results[dataset] = success # Print summary print(f"\n{'='*80}") print("Inference Summary:") print(f"{'='*80}") successful = sum(1 for v in results.values() if v) print(f"✓ Successful: {successful}/{len(datasets)}") print(f"✗ Failed: {len(datasets) - successful}/{len(datasets)}") if successful < len(datasets): print("\nFailed datasets:") for dataset, success in results.items(): if not success: print(f" - {dataset}") return results def run_evaluation( results_dir: str, data_path: str, datasets: List[str], output_csv: Optional[str] = None ) -> pd.DataFrame: """ Run evaluation for all models and datasets Args: results_dir: Directory containing model results data_path: Path to ground truth data datasets: List of dataset names to evaluate output_csv: Path to output CSV file Returns: pd.DataFrame: Evaluation results """ print(f"\n{'#'*80}") print(f"# Running Evaluation") print(f"# Results Directory: {results_dir}") print(f"# Data Path: {data_path}") print(f"{'#'*80}\n") cmd = [ 'python', 'get_scores.py', '--results-dir', results_dir, '--data-path', data_path, '--datasets' ] + datasets if output_csv: cmd.extend(['--output-csv', output_csv]) try: result = subprocess.run(cmd, check=True, capture_output=False, text=True) print(f"\n✓ Evaluation completed successfully") # Load and return the results if output_csv: csv_path = output_csv else: csv_path = os.path.join(results_dir, 'scores.csv') if os.path.exists(csv_path): df = pd.read_csv(csv_path) return df else: print(f"Warning: Output CSV not found at {csv_path}") return pd.DataFrame() except subprocess.CalledProcessError as e: print(f"✗ Error running evaluation: {e}") return pd.DataFrame() except Exception as e: print(f"✗ Unexpected error during evaluation: {e}") return pd.DataFrame() def run_full_pipeline( model_id: str, data_folder: str, output_folder: str, datasets: List[str] = ALL_DATASETS, device: str = 'cuda', num_ctx: int = 5, max_tokens: int = 64, expected_samples: int = 500, limit: Optional[int] = None, skip_inference: bool = False, skip_evaluation: bool = False, output_csv: Optional[str] = None ) -> pd.DataFrame: """ Run the complete pipeline: inference + evaluation Args: model_id: Model identifier or path data_folder: Path to data folder output_folder: Path to output folder datasets: List of dataset names device: Device to run on (cuda/cpu) num_ctx: Number of contexts max_tokens: Maximum number of tokens to generate expected_samples: Expected number of samples limit: Limit number of samples to process skip_inference: Skip inference step skip_evaluation: Skip evaluation step output_csv: Path to output CSV file Returns: pd.DataFrame: Evaluation results """ print(f"\n{'#'*80}") print(f"# ChatRAG-Hi Full Evaluation Pipeline") print(f"{'#'*80}\n") print(f"Model: {model_id}") print(f"Datasets: {', '.join(datasets)}") print(f"Device: {device}") print(f"Skip Inference: {skip_inference}") print(f"Skip Evaluation: {skip_evaluation}") # Step 1: Run inference if not skip_inference: inference_results = run_inference_for_all_datasets( model_id=model_id, datasets=datasets, data_folder=data_folder, output_folder=output_folder, device=device, num_ctx=num_ctx, max_tokens=max_tokens, expected_samples=expected_samples, limit=limit ) else: print("\n⊘ Skipping inference step") # Step 2: Run evaluation if not skip_evaluation: eval_results = run_evaluation( results_dir=output_folder, data_path=data_folder, datasets=datasets, output_csv=output_csv ) return eval_results else: print("\n⊘ Skipping evaluation step") return pd.DataFrame() def get_args(): """Parse command line arguments""" parser = argparse.ArgumentParser( description="Comprehensive wrapper for ChatRAG-Hi inference and evaluation" ) # Pipeline control parser.add_argument('--mode', type=str, choices=['inference', 'evaluation', 'full'], default='full', help='Pipeline mode: inference only, evaluation only, or full pipeline') # Model configuration parser.add_argument('--model-id', type=str, required=True, help='Model identifier or path') # Data paths parser.add_argument('--data-folder', type=str, required=True, help='Path to data folder containing ground truth JSON files') parser.add_argument('--output-folder', type=str, required=True, help='Path to output folder for predictions and scores') # Dataset selection parser.add_argument('--datasets', type=str, nargs='+', default=ALL_DATASETS, help='List of datasets to process') parser.add_argument('--all-datasets', action='store_true', help='Process all available datasets') # Inference parameters parser.add_argument('--device', type=str, default='cuda', help='Device to run on: cpu or cuda') parser.add_argument('--num-ctx', type=int, default=5, help='Number of contexts') parser.add_argument('--max-tokens', type=int, default=64, help='Maximum number of tokens to generate') parser.add_argument('--expected-samples', type=int, default=500, help='Expected number of samples per dataset') parser.add_argument('--limit', type=int, default=None, help='Limit number of samples to process (for testing)') # Output options parser.add_argument('--output-csv', type=str, default=None, help='Path to output CSV file for scores') args = parser.parse_args() # Use all datasets if specified if args.all_datasets: args.datasets = ALL_DATASETS return args def main(): """Main entry point""" args = get_args() # Create output directory if it doesn't exist os.makedirs(args.output_folder, exist_ok=True) # Determine what to skip based on mode skip_inference = (args.mode == 'evaluation') skip_evaluation = (args.mode == 'inference') # Run the pipeline results = run_full_pipeline( model_id=args.model_id, data_folder=args.data_folder, output_folder=args.output_folder, datasets=args.datasets, device=args.device, num_ctx=args.num_ctx, max_tokens=args.max_tokens, expected_samples=args.expected_samples, limit=args.limit, skip_inference=skip_inference, skip_evaluation=skip_evaluation, output_csv=args.output_csv ) if not results.empty and args.mode != 'inference': print(f"\n{'='*80}") print("Final Evaluation Results:") print(f"{'='*80}\n") print(results.to_string(index=False)) print(f"\n{'='*80}\n") if __name__ == "__main__": main()