Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,081 Bytes
2f5bf7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import requests
from typing import List, Optional, cast, TypeVar
from abc import ABC, abstractmethod

import torch
import torch.nn.functional as F
from torch import Tensor
from torch.utils.data import DataLoader

from tqdm import tqdm
from PIL import Image

from datasets import Dataset 
from torch.utils.data import Dataset as TorchDataset

from transformers import AutoProcessor, PaliGemmaForConditionalGeneration, Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info

T = TypeVar("T")
class ListDataset(TorchDataset[T]):
    def __init__(self, elements: List[T]):
        self.elements = elements

    def __len__(self) -> int:
        return len(self.elements)

    def __getitem__(self, idx: int) -> T:
        return self.elements[idx]

def get_torch_device(device: str = "auto") -> str:
    """
    Returns the device (string) to be used by PyTorch.

    `device` arg defaults to "auto" which will use:
    - "cuda:0" if available
    - else "mps" if available
    - else "cpu".
    """

    if device == "auto":
        if torch.cuda.is_available():
            device = "cuda"
        elif torch.backends.mps.is_available():  # for Apple Silicon
            device = "mps"
        else:
            device = "cpu"

    return device

class ImageConverter():

    def __init__(self,image_corpus, images_mapping):
        self.image_corpus = image_corpus
        self.images_mapping = images_mapping

    def transform_func(self, example):
        if 'image' in example:
            if isinstance(example['image'], str):
                example['image'] = self.image_corpus[self.images_mapping[example['image']]]
            if isinstance(example['image'], list):
                converted_images = []
                for el in example['image']:
                    converted_images.append(self.image_corpus[self.images_mapping[el]]['image'].convert("RGB"))
                example['image'] = converted_images         
        return(example)

class CustomRetriever(ABC):
    """
    Custom model (dense embeddings).
    """

    def __init__(self, model_name_or_path, device: str = "auto"):
        super().__init__()
        self.device = get_torch_device(device)
        self.min_pixels=1*28*28
        self.max_pixels=2560*28*28
        self.processor = AutoProcessor.from_pretrained(model_name_or_path, min_pixels=self.min_pixels, max_pixels=self.max_pixels)
        self.processor.padding_side = "left"
        self.document_prefix = "What is shown in this image?"
        self.query_prefix = "Query:"
        self.pooling = "last"

    @property
    def use_visual_embedding(self) -> bool:
        return True

    @abstractmethod
    def process_images(self, images: List[Image.Image], **kwargs):
        pass

    @abstractmethod
    def process_queries(self, queries: List[str], **kwargs):
        pass
    
    def forward_queries(self, queries, batch_size: int, **kwargs) -> List[torch.Tensor]:
        dataloader = DataLoader(
            dataset=ListDataset[str](queries),
            batch_size=batch_size,
            shuffle=False,
            collate_fn=self.process_queries,
            num_workers=32
        )

        qs = []
        for batch_query in tqdm(dataloader, desc="Forward pass queries..."):
            with torch.no_grad():
                with torch.autocast(device_type="cuda"):
                    batch_query = {k: v.to(self.device) for k, v in batch_query.items()}
                    embeddings_query = self.model(**batch_query, output_hidden_states=True).hidden_states[-1]
                    
                    embeds = self.pool(
                    last_hidden_states=embeddings_query,
                    attention_mask=batch_query["attention_mask"],
                    pool_type=self.pooling,
                    )
                    embeds = F.normalize(embeds, dim=-1)
            
            qs.append(embeds.contiguous())


        return torch.cat(qs, dim=0).cpu()

    def forward_documents(self, documents: List[str], batch_size: int, **kwargs) -> List[torch.Tensor]:
        dataset = Dataset.from_dict({"image": documents})
        if self.imageconverter:
            dataset.set_transform(self.imageconverter.transform_func)
        dataloader = DataLoader(
            dataset=dataset,
            batch_size=batch_size,
            shuffle=False,
            collate_fn=self.process_images,
            num_workers=32
        )

        ds = []
        for batch_doc in tqdm(dataloader, desc="Forward pass documents..."):
            with torch.no_grad():
                with torch.autocast(device_type="cuda"):
                    batch_doc = {k: v.to(self.device) for k, v in batch_doc.items()}
                    embeddings_doc = self.model(**batch_doc, output_hidden_states=True).hidden_states[-1]
                    embeds = self.pool(
                    last_hidden_states=embeddings_doc,
                    attention_mask=batch_doc["attention_mask"],
                    pool_type=self.pooling,
                    )
                    embeds = F.normalize(embeds, dim=-1)
            
            ds.append(embeds.contiguous())

        return torch.cat(ds, dim=0).cpu()

    def pool(self, last_hidden_states: Tensor,
         attention_mask: Tensor,
         pool_type: str) -> Tensor:
        last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)

        if pool_type == "avg":
            emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
        elif pool_type == "weighted_avg":
            emb = last_hidden.sum(dim=1)
        elif pool_type == "cls":
            emb = last_hidden[:, 0]
        elif pool_type == "last":
            left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
            if left_padding:
                emb = last_hidden[:, -1]
            else:
                sequence_lengths = attention_mask.sum(dim=1) - 1
                batch_size = last_hidden.shape[0]
                emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
        else:
            raise ValueError(f"pool_type {pool_type} not supported")

        return emb

class DSERetriever(CustomRetriever):
    def __init__(self, model_name_or_path, device: str = "auto", images=None):
        super().__init__(model_name_or_path, device)
        model = Qwen2VLForConditionalGeneration.from_pretrained(
            model_name_or_path, 
            attn_implementation="flash_attention_2",
            torch_dtype=torch.bfloat16,
            device_map='cuda'
        ).eval()
        model.padding_side = "left"
        self.model = model
        self.q_max_length=512
        self.p_max_length=10240
        self.set_resize = False
        self.resized_height=760 
        self.resized_width=760
        self.imageconverter = None
        if images:
            images_mapping = {}
            for i,e in enumerate(images['file_name']):
                images_mapping[e] = i
            self.imageconverter = ImageConverter(image_corpus=images, images_mapping=images_mapping)

    def process_images(self,  documents, **kwargs):
        if isinstance(documents, dict):
            images = documents["image"]
            assert len(texts) == len(images)
        elif isinstance(documents, list):
            images = [pair['image'] for pair in documents ]
        else:
            raise ValueError("The documents need to be a dict or list of dicts")
        
        input_texts = []
        doc_messages = []
        doc_texts = [self.document_prefix] * len(images)
        for doc_text, doc_image in zip(doc_texts, images):
            message = [
                {
                    'role': 'user',
                    'content': [
                        {'type': 'image', 'image': doc_image, 'resized_height': self.resized_height , 'resized_width': self.resized_width} if self.set_resize else {'type': 'image', 'image': doc_image},
                        {'type': 'text', 'text': 'What is shown in this image?'}
                    ]
                }
            ]
            doc_messages.append(message)
            doc_text = self.processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True) + "<|endoftext|>"
            input_texts.append(doc_text)

        images, videos = process_vision_info(doc_messages)
        doc_batch_dict = self.processor(
            text=input_texts, 
            images=images, 
            videos=videos, 
            truncation=True,
            max_length=self.p_max_length,
            padding='longest',
            return_tensors='pt'
        )
        return doc_batch_dict

    def process_queries(self, queries: List[str], **kwargs):
        query_messages = []
        for query in queries:
            message = [
                {
                    'role': 'user',
                    'content': [
                        {'type': 'image', 'image': Image.new('RGB', (28, 28)), 'resized_height':1 , 'resized_width':1}, # need a dummy image
                        {'type': 'text', 'text': f'Query: {query}'},
                    ]
                }
            ]
            query_messages.append(message)
        query_texts = [
            x + "<|endoftext|>" for x in self.processor.apply_chat_template(query_messages, tokenize=False, add_generation_prompt=True)
        ] 
        images, videos = process_vision_info(query_messages)
        query_batch_dict = self.processor(
            text=query_texts, 
            images=images, 
            videos=videos, 
            padding='longest',
            return_tensors='pt'
        )
        return query_batch_dict

    def encode_queries(
        self, 
        queries: List[str], 
        batch_size: int = 16, 
        **kwargs
    ):
        return self.forward_queries(queries, batch_size=batch_size)
    
    def encode_corpus(
        self, 
        corpus, 
        batch_size: int = 16, 
        **kwargs
    ):
        
        return self.forward_documents([el['image_id'] for el in corpus], batch_size=batch_size)