Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
acceptability-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """BLiMP dataset with minimal pairs of grammatical phenomena in English.""" | |
| import json | |
| import datasets | |
| _CITATION = """ | |
| @article{warstadt2019blimp, | |
| title={BLiMP: A Benchmark of Linguistic Minimal Pairs for English}, | |
| author={Warstadt, Alex and Parrish, Alicia and Liu, Haokun and Mohananey, Anhad and Peng, Wei, and Wang, Sheng-Fu and Bowman, Samuel R}, | |
| journal={arXiv preprint arXiv:1912.00582}, | |
| year={2019} | |
| } | |
| """ | |
| _DESCRIPTION = """ | |
| BLiMP is a challenge set for evaluating what language models (LMs) know about | |
| major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each | |
| containing 1000 minimal pairs isolating specific contrasts in syntax, | |
| morphology, or semantics. The data is automatically generated according to | |
| expert-crafted grammars. | |
| """ | |
| _PROJECT_URL = "https://github.com/alexwarstadt/blimp/tree/master/" | |
| _DOWNLOAD_URL = "https://raw.githubusercontent.com/alexwarstadt/blimp/master/" | |
| class BlimpConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Blimp.""" | |
| def __init__(self, name, version=datasets.Version("0.1.0"), **kwargs): | |
| """BuilderConfig for Blimp. | |
| Args: | |
| name (str): UID of the linguistic paradigm | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| description = _DESCRIPTION | |
| description += f"This configuration includes the paradigm {name}." | |
| super().__init__(name=name, description=description, version=version, **kwargs) | |
| class Blimp(datasets.GeneratorBasedBuilder): | |
| """Minimal grammatical and ungrammatical pairs of 67 linguistic paradigms.""" | |
| all_paradigms = [ | |
| "adjunct_island", | |
| "anaphor_gender_agreement", | |
| "anaphor_number_agreement", | |
| "animate_subject_passive", | |
| "animate_subject_trans", | |
| "causative", | |
| "complex_NP_island", | |
| "coordinate_structure_constraint_complex_left_branch", | |
| "coordinate_structure_constraint_object_extraction", | |
| "determiner_noun_agreement_1", | |
| "determiner_noun_agreement_2", | |
| "determiner_noun_agreement_irregular_1", | |
| "determiner_noun_agreement_irregular_2", | |
| "determiner_noun_agreement_with_adj_2", | |
| "determiner_noun_agreement_with_adj_irregular_1", | |
| "determiner_noun_agreement_with_adj_irregular_2", | |
| "determiner_noun_agreement_with_adjective_1", | |
| "distractor_agreement_relational_noun", | |
| "distractor_agreement_relative_clause", | |
| "drop_argument", | |
| "ellipsis_n_bar_1", | |
| "ellipsis_n_bar_2", | |
| "existential_there_object_raising", | |
| "existential_there_quantifiers_1", | |
| "existential_there_quantifiers_2", | |
| "existential_there_subject_raising", | |
| "expletive_it_object_raising", | |
| "inchoative", | |
| "intransitive", | |
| "irregular_past_participle_adjectives", | |
| "irregular_past_participle_verbs", | |
| "irregular_plural_subject_verb_agreement_1", | |
| "irregular_plural_subject_verb_agreement_2", | |
| "left_branch_island_echo_question", | |
| "left_branch_island_simple_question", | |
| "matrix_question_npi_licensor_present", | |
| "npi_present_1", | |
| "npi_present_2", | |
| "only_npi_licensor_present", | |
| "only_npi_scope", | |
| "passive_1", | |
| "passive_2", | |
| "principle_A_c_command", | |
| "principle_A_case_1", | |
| "principle_A_case_2", | |
| "principle_A_domain_1", | |
| "principle_A_domain_2", | |
| "principle_A_domain_3", | |
| "principle_A_reconstruction", | |
| "regular_plural_subject_verb_agreement_1", | |
| "regular_plural_subject_verb_agreement_2", | |
| "sentential_negation_npi_licensor_present", | |
| "sentential_negation_npi_scope", | |
| "sentential_subject_island", | |
| "superlative_quantifiers_1", | |
| "superlative_quantifiers_2", | |
| "tough_vs_raising_1", | |
| "tough_vs_raising_2", | |
| "transitive", | |
| "wh_island", | |
| "wh_questions_object_gap", | |
| "wh_questions_subject_gap", | |
| "wh_questions_subject_gap_long_distance", | |
| "wh_vs_that_no_gap", | |
| "wh_vs_that_no_gap_long_distance", | |
| "wh_vs_that_with_gap", | |
| "wh_vs_that_with_gap_long_distance", | |
| ] | |
| BUILDER_CONFIGS = [BlimpConfig(paradigm) for paradigm in all_paradigms] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "sentence_good": datasets.Value("string"), | |
| "sentence_bad": datasets.Value("string"), | |
| "field": datasets.Value("string"), | |
| "linguistics_term": datasets.Value("string"), | |
| "UID": datasets.Value("string"), | |
| "simple_LM_method": datasets.Value("bool"), | |
| "one_prefix_method": datasets.Value("bool"), | |
| "two_prefix_method": datasets.Value("bool"), | |
| "lexically_identical": datasets.Value("bool"), | |
| "pair_id": datasets.Value("int32"), | |
| } | |
| ), | |
| homepage=_PROJECT_URL, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| download_urls = _DOWNLOAD_URL + f"data/{self.config.name}.jsonl" | |
| downloaded_file = dl_manager.download_and_extract(download_urls) | |
| return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| with open(filepath, "r", encoding="utf-8") as f: | |
| for line in f: | |
| line_dict = json.loads(line) | |
| id_ = line_dict["UID"] + "_" + line_dict["pairID"] | |
| feats = { | |
| "sentence_good": line_dict["sentence_good"], | |
| "sentence_bad": line_dict["sentence_bad"], | |
| "field": line_dict["field"], | |
| "linguistics_term": line_dict["linguistics_term"], | |
| "UID": line_dict["UID"], | |
| "simple_LM_method": line_dict["simple_LM_method"], | |
| "one_prefix_method": line_dict["one_prefix_method"], | |
| "two_prefix_method": line_dict["two_prefix_method"], | |
| "lexically_identical": line_dict["lexically_identical"], | |
| "pair_id": int(line_dict["pairID"]), | |
| } | |
| yield id_, feats | |