IlyasMoutawwakil HF staff commited on
Commit
092e50b
·
verified ·
1 Parent(s): e5f21a6

Upload cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json with huggingface_hub

Browse files
cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json CHANGED
@@ -3,7 +3,7 @@
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
- "version": "2.3.1+cu121",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
@@ -110,7 +110,7 @@
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
- "max_ram": 1105.096704,
114
  "max_global_vram": 3169.32096,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
@@ -119,24 +119,24 @@
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
- "total": 0.8635842323303223,
123
- "mean": 0.17271684646606447,
124
- "stdev": 0.2615570715585104,
125
- "p50": 0.042060798645019534,
126
- "p90": 0.43451308746337897,
127
- "p95": 0.5651717964172361,
128
- "p99": 0.6696987635803222,
129
  "values": [
130
- 0.6958305053710937,
131
- 0.04253696060180664,
132
- 0.042060798645019534,
133
- 0.04158771133422851,
134
- 0.04156825637817383
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
- "value": 57.89823172787495
140
  },
141
  "energy": null,
142
  "efficiency": null
@@ -144,7 +144,7 @@
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
- "max_ram": 1105.096704,
148
  "max_global_vram": 3169.32096,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
@@ -153,21 +153,21 @@
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
- "total": 0.7383674659729004,
157
- "mean": 0.3691837329864502,
158
- "stdev": 0.32664677238464357,
159
- "p50": 0.3691837329864502,
160
- "p90": 0.630501150894165,
161
- "p95": 0.6631658281326294,
162
- "p99": 0.6892975699234009,
163
  "values": [
164
- 0.6958305053710937,
165
- 0.04253696060180664
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
- "value": 10.834713565634834
171
  },
172
  "energy": null,
173
  "efficiency": null
@@ -175,7 +175,7 @@
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
- "max_ram": 1105.096704,
179
  "max_global_vram": 3169.32096,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
@@ -184,22 +184,22 @@
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
- "total": 0.12521676635742188,
188
- "mean": 0.041738922119140626,
189
- "stdev": 0.00022773961339313104,
190
- "p50": 0.04158771133422851,
191
- "p90": 0.04196618118286133,
192
- "p95": 0.04201348991394043,
193
- "p99": 0.042051336898803714,
194
  "values": [
195
- 0.042060798645019534,
196
- 0.04158771133422851,
197
- 0.04156825637817383
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
- "value": 143.75071744482165
203
  },
204
  "energy": null,
205
  "efficiency": null
 
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
+ "version": "2.4.0+cu121",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
 
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
+ "max_ram": 1154.523136,
114
  "max_global_vram": 3169.32096,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
 
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
+ "total": 0.8260178108215332,
123
+ "mean": 0.16520356216430665,
124
+ "stdev": 0.2452846483550176,
125
+ "p50": 0.04228300857543945,
126
+ "p90": 0.41090499725341806,
127
+ "p95": 0.5333383323669433,
128
+ "p99": 0.6312850004577637,
129
  "values": [
130
+ 0.6557716674804688,
131
+ 0.0436049919128418,
132
+ 0.04228300857543945,
133
+ 0.042145790100097655,
134
+ 0.04221235275268555
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
+ "value": 60.531382428995634
140
  },
141
  "energy": null,
142
  "efficiency": null
 
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
+ "max_ram": 1154.523136,
148
  "max_global_vram": 3169.32096,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
 
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
+ "total": 0.6993766593933106,
157
+ "mean": 0.3496883296966553,
158
+ "stdev": 0.3060833377838135,
159
+ "p50": 0.3496883296966553,
160
+ "p90": 0.5945549999237061,
161
+ "p95": 0.6251633337020874,
162
+ "p99": 0.6496500007247925,
163
  "values": [
164
+ 0.6557716674804688,
165
+ 0.0436049919128418
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
+ "value": 11.438757488618183
171
  },
172
  "energy": null,
173
  "efficiency": null
 
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
+ "max_ram": 1154.523136,
179
  "max_global_vram": 3169.32096,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
 
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
+ "total": 0.12664115142822263,
188
+ "mean": 0.04221371714274088,
189
+ "stdev": 5.6027515049595866e-05,
190
+ "p50": 0.04221235275268555,
191
+ "p90": 0.04226887741088867,
192
+ "p95": 0.04227594299316406,
193
+ "p99": 0.04228159545898437,
194
  "values": [
195
+ 0.04228300857543945,
196
+ 0.042145790100097655,
197
+ 0.04221235275268555
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
+ "value": 142.13389405419292
203
  },
204
  "energy": null,
205
  "efficiency": null