File size: 2,218 Bytes
8888711
 
 
 
 
 
 
 
 
 
 
877a22c
8888711
 
877a22c
8888711
 
 
 
 
2456993
 
877a22c
 
 
 
 
 
 
dbe9dcf
8888711
2456993
 
 
 
 
 
 
877a22c
2456993
 
e8bf783
 
 
 
 
 
 
 
 
 
dd51f55
e8bf783
 
 
 
2456993
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: segmentation
    dtype: image
  - name: captions
    sequence: string
  splits:
  - name: train
    num_bytes: 1200871225
    num_examples: 10000
  download_size: 1199201925
  dataset_size: 1200871225
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- image-segmentation
- image-to-text
- text-to-image
license: cc-by-4.0
language:
- en
size_categories:
- 1K<n<10K
pretty_name: COCO 2017 segmentation dataset with captions 10k samples
---

## 📄 License and Attribution

This dataset is a downsampled version of the [COCO 2017 dataset](https://cocodataset.org/#home), tailored for segmentation tasks. It has the following fields:


- image: 256x256 image
- segmentation: 256x256 image. Each pixel encodes the class of that pixel. See `class_names_dict.json` for a legend.
- captions: a list of captions for the image, each by a different labeler.


Use the dataset as follows:

```python
import requests
from datasets import load_dataset

ds = load_dataset("peteole/coco2017-segmentation", split="train")

# Optional: Load the class names as dict
url = "https://huggingface.co/datasets/peteole/coco2017-segmentation-10k-256x256/resolve/main/class_names_dict.json"
response = requests.get(url)
class_names_dict = response.json()
```

### License

- **License Type**: [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)
- **License Details**: This license permits redistribution, modification, and commercial use, provided that appropriate credit is given to the original creators.
- **Original Dataset License**: The original COCO 2017 dataset is licensed under CC BY 4.0.

### Attribution

When using this dataset, please cite the original COCO dataset as follows:

> Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. "Microsoft COCO: Common Objects in Context." In *European Conference on Computer Vision*, pp. 740–755. Springer, 2014.

For more information, visit the [COCO dataset website](https://cocodataset.org/#home).