Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Catalan
DOI:
Libraries:
Datasets
pandas
License:
File size: 7,962 Bytes
549a3c6
 
 
 
 
 
 
 
 
318bd27
549a3c6
 
 
 
 
100eba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549a3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f47e8
549a3c6
 
 
318bd27
 
 
549a3c6
 
 
 
a2f47e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549a3c6
 
c13ed71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
---
annotations_creators:
- Barcelona Supercomputing Center
language_creators:
- Racó Català
- GuiaCat
language:
- ca
license:
- cc-by-nc-nd-4.0
multilinguality:
- monolingual
task_categories:
- text-classification
task_ids: []
pretty_name: CaSSA
dataset_info:
  features:
  - name: sent_id
    dtype: string
  - name: text
    dtype: string
  - name: opinions
    list:
    - name: Source
      sequence:
        sequence: string
    - name: Target
      sequence:
        sequence: string
    - name: Polar_expression
      sequence:
        sequence: string
    - name: Polarity
      dtype: string
    - name: Intensity
      dtype: string
  splits:
  - name: train
    num_bytes: 4522809
    num_examples: 6400
  download_size: 2142890
  dataset_size: 4522809
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for CaSSA, the Catalan Structured Sentiment Analysis dataset

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Homepage** [Projecte AINA](https://projecteaina.cat/tech/)
- **Repository** [HuggingFace](https://huggingface.co/projecte-aina)
- **Point of Contact** [email protected]

### Dataset Summary

The CaSSA dataset is a corpus of 6,400 reviews and forum messages annotated with polar expressions. Each piece of text is annotated with all the expressions of polarity that it contains. For each polar expression, we annotated the expression itself, the target (the object of the expression), and the source (the subject expressing the sentiment). 25,453 polar expressions have been annotated.

### Supported Tasks and Leaderboards

This dataset can be used to train models for sentiment analysis.

### Languages

The dataset is in Catalan (`ca-ES`).

## Dataset Structure

Each instance in the dataset is a text. For each text, there can be 0 to unlimited polar expressions, which are contained in the "opinions" field. Each opinion contains a source, a target, a polar expression, a polarity value and an intensity value. 

### Data Instances

```
{
"sent_id": "2d6a3a0f-6686-4d8b-9c5f-51c424ff90be",
"text": "El seu menú de nit de cap de setmana es boníssim, plats fets amb criteri i que surten com un rellotge. Servei proper i amable. Per poc mes de 20 euros entre pisos i flautes menges com un rei.", 
"opinions": 
    [
      {
        "Source": None, 
        "Target": [["Servei"], ["103:109"]], 
        "Polar_expression": [["proper"], ["110:116"]], 
        "Polarity": "Neutral", 
        "Intensity": "Standard"
      }, 
      {
        "Source": None, 
        "Target": [["Servei"], ["103:109"]], 
        "Polar_expression": [["amable"], ["119:125"]], 
        "Polarity": "Positive", 
        "Intensity": "Standard"
      }, 
      {
        "Source": None, 
        "Target": None, 
        "Polar_expression": [["menges com un rei"], ["173:190"]], 
        "Polarity": "Positive", 
        "Intensity": "Strong"
      }, 
      {
        "Source": [["seu"], ["3:6"]], 
        "Target": [["menú de nit de cap de setmana"], ["7:36"]], 
        "Polar_expression": [["bon\u00edssim"], ["40:48"]], 
        "Polarity": "Positive", 
        "Intensity": "Strong"}, 
      {
        "Source": None, 
        "Target": [["plats"], ["50:55"]], 
        "Polar_expression": [["amb criteri"], ["61:72"]], 
        "Polarity": "Positive", 
        "Intensity": "Standard"
      }
    ]
}

```

### Data Splits

The dataset does not contain splits.

## Dataset Creation

### Curation Rationale

We created this corpus to contribute to the development of language models in Catalan, a low-resource language. 

### Source Data

The data was collected using the messages from the GuiaCat online guide and the forum Racó Català.

#### Initial Data Collection and Normalization

We selected all the restaurant reviews we had from GuiaCat, and used a LLM to select messages in Racó Català that were written in the style of reviews.

#### Who are the source language producers?

The source language producers are users of GuiaCat and Racó Català.

### Annotations

Each opinion contains a source, a target, a polar expression, a polarity value and an intensity value. Source, Target, and Polar_expressions are spans, which are represented both by the string and by the position of the characters. Polarity and Intensity are labels, which can respectively be, Positive, Negative and Neutral, and Standard and Strong.

#### Annotation process

- The data was annotated by 2 annotators. In the cases in which they did not fully agree, a third annotator selected the preferred annotation.  

#### Who are the annotators?

All the annotators are native speakers of Catalan. 

### Personal and Sensitive Information

The data from Racó Català was annonymised to remove user names and emails, which were changed to random Catalan names. The mentions to the forum itself have also been changed.

## Considerations for Using the Data

### Social Impact of Dataset

We hope this corpus contributes to the development of language models in Catalan, a low-resource language.

### Discussion of Biases

We are aware that, since the data comes from online reviews and a public forum, this will contain biases, hate speech and toxic content. We have not applied any steps to reduce their impact.

### Other Known Limitations

## Additional Information

### Dataset Curators

Language Technologies Unit (LangTech) at the Barcelona Supercomputing Center.

This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).

### Licensing Information

This work is licensed under a [Creative Commons Attribution Non-commercial No-Derivatives 4.0 International License](https://creativecommons.org/licenses/by-nc-nd/4.0/).

**The license has been updated to a more restrictive open license. Consequently, any downloads initiated after 12/03/2024 must adhere to the current licensing terms.

### Citation Information

```
@inproceedings{gonzalez-agirre-etal-2024-building-data,
    title = "Building a Data Infrastructure for a Mid-Resource Language: The Case of {C}atalan",
    author = "Gonzalez-Agirre, Aitor  and
      Marimon, Montserrat  and
      Rodriguez-Penagos, Carlos  and
      Aula-Blasco, Javier  and
      Baucells, Irene  and
      Armentano-Oller, Carme  and
      Palomar-Giner, Jorge  and
      Kulebi, Baybars  and
      Villegas, Marta",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.231",
    pages = "2556--2566",
}
```

### Contributions