File size: 4,886 Bytes
ede72b5
 
d89b79f
 
 
 
ede72b5
 
d89b79f
 
ede72b5
 
 
 
 
d89b79f
 
ede72b5
 
 
bb6992b
ede72b5
 
 
 
 
 
 
 
 
 
 
 
 
d89b79f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6992b
 
 
 
 
 
 
 
 
 
 
 
 
8f1a7ff
 
 
d5511a1
8f1a7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5511a1
 
8f1a7ff
 
 
d5511a1
8f1a7ff
 
 
d5511a1
8f1a7ff
 
 
 
 
 
 
d5511a1
8f1a7ff
 
 
 
d5511a1
 
8f1a7ff
 
 
 
 
 
 
d5511a1
8f1a7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
license: mit
annotations_creators:
- no-annotation
language_creators:
- expert-generated
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
language:
- en
tags:
- blockchain
- code
- benchmark
pretty_name: LLM Blockchain Benchmark
size_categories:
- 10K<n<100K
dataset_info:
- config_name: math
  features:
  - name: question
    dtype: string
  - name: choices
    sequence: string
  - name: answer
    dtype:
      class_label:
        names:
          '0': A
          '1': B
          '2': C
          '3': D
- config_name: general-reasoning
  features:
  - name: question
    dtype: string
  - name: choices
    sequence: string
  - name: answer
    dtype:
      class_label:
        names:
          '0': A
          '1': B
          '2': C
          '3': D
- config_name: code
  features:
  - name: question
    dtype: string
  - name: choices
    sequence: string
  - name: answer
    dtype:
      class_label:
        names:
          '0': A
          '1': B
          '2': C
          '3': D
configs:
- config_name: math
  data_files:
  - split: test
    path: Math*
- config_name: general-reasoning
  data_files:
  - split: test
    path: General*
- config_name: code
  data_files:
  - split: test
    path: Coding*
---


# Dataset Card for LLM Blockchain Benchmark

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository**: [github repo]

### Dataset Summary

The Blockchain Benchmark Dataset is a comprehensive collection of data specifically curated for benchmarking Language Models (LMs) in the domain of blockchain technology. This dataset is designed to facilitate research and development in natural language understanding within the blockchain domain.
A complete list of tasks: ['general-reasoning', 'code', 'math']
### Supported Tasks and Leaderboards
|                Model               | Authors |  Humanities |  Social Science  | STEM | Other | Average |
|------------------------------------|----------|:-------:|:-------:|:-------:|:-------:|:-------:|

[add tested models here]


### Languages
English

## Dataset Structure
### Data Instances
An example from code subtask looks as follows:

```
{
  "question": "The defining idea of Uniswap v3 token is",
  "choices": ['Concentrated Liquidity', 'Diluted Liquidity', 'Concentrated Programming', 'Optimized price ranges'],
  "answer": "A"
}
```

### Data Fields
- `question`: a string feature
- `choices`: a list of 4 string features
- `answer`: a ClassLabel feature

  
### Data Splits
- `test`: all data under test for benchmarking

## Dataset Creation

### Curation Rationale

This dataset addresses the scarcity of benchmarks designed specifically for Language Models (LMs) in the realm of blockchain technology. With the intersection of blockchain and LM technologies gaining traction, a focused dataset becomes essential. This collection serves as a vital resource for advancing research and understanding within the dynamic blockchain landscape.
### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

MIT License

### Citation Information

If you find this useful in your research, please consider supporting Tensorplex [link]
```
### Contributions

Thanks to Tensorplex for adding this dataset.