Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 4,751 Bytes
4be4553 0f7abde 4be4553 0f7abde 4be4553 bcb0d5e 4be4553 bcb0d5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
dataset_info:
features:
- name: query_id
dtype: string
- name: query
dtype: string
- name: positive_passages
list:
- name: docid
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: negative_passages
list:
- name: docid
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: subset
dtype: string
splits:
- name: train
num_bytes: 1747136221
num_examples: 93581
download_size: 1009882538
dataset_size: 1747136221
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: cc-by-sa-4.0
task_categories:
- question-answering
language:
- en
pretty_name: RLHN-100K
size_categories:
- 10K<n<100K
---
# Dataset Card for RLHN-100K
## Dataset Description
[Repository](https://github.com/castorini/rlhn) |
[Paper](https://huggingface.co/papers/2505.16967) |
[ArXiv](https://arxiv.org/abs/2505.16967)
RLHN is a cascading LLM framework designed to accurately relabel hard negatives in existing IR/RAG training datasets, such as MS MARCO and HotpotQA.
This Tevatron dataset (100K training pairs) contains the queries, positives + relabeled hard negatives, remaining hard negatives for 7 datasets in the BGE training collection.
This repository contains the training pairs that can be used to fine-tune embedding, ColBERT or multi-vector, and reranker models.
The original dataset (bad quality; containing false negatives) can be found at [rlhn/default-100K](https://huggingface.co/datasets/rlhn/default-100K/).
> Note: RLHN datasets are not **new** training datasets, but rather existing BGE collection training datasets with hard negatives cleaned!
## Dataset Structure
To access the data using HuggingFace `datasets`:
```python
rlhn = datasets.load_dataset('rlhn/rlhn-100K')
# training set:
for data in freshstack['train']:
query_id = data["query_id"] # md5 hash of the query_id
query = data["query"] # query text
subset = data["subset"] # training dataset, e.g., fiqa or msmarco_passage
# positive passages
for positive_passage in data["positive_passages"]:
doc_id = positive_passage["docid"]
title = positive_passage["title"] # title is usually empty, added in text
text = positive_passage["text"] # contains both the title & text
# hard negative passages
for negative_passage in data["negative_passages"]:
doc_id = negative_passage["docid"]
title = negative_passage["title"] # title is usually empty, added in text
text = negative_passage["text"] # contains both the title & text
```
## Original Dataset Statistics
The following table contains the number of training pairs for each training dataset included in RLHN. These numbers are for the default setting.
| Dataset | 100K splits | 250K splits | 400K splits | 680K splits |
|-------------------|-------------|-------------|-------------|------------- |
| arguana | 4,065 | 4,065 | 4,065 | 4,065 |
| fever | 28,755 | 28,755 | 28,755 | 28,755 |
| fiqa | 5,500 | 5,500 | 5,500 | 5,500 |
| hotpotqa | 10,250 | 30,000 | 84,516 | 84,516 |
| msmarco_passage | 49,571 | 145,000 | 210,000 | 485,823 |
| nq | 6,110 | 30,000 | 58,568 | 58,568 |
| scidocsrr | 12,654 | 12,654 | 12,654 | 12,654 |
| **total** | **96,167** | **255,974** | **404,058** | **679,881** |
## License
The RLHN dataset is made available with the CC-BY-SA 4.0 license.
## Hashing & IDs
We generate the md5 hash as the unique identifier (ID) for both the query \& documents, using the code below:
```python
import hashlib
def get_md5_hash(text):
"""Calculates the MD5 hash of a given string.
Args:
text: The string to hash.
Returns:
The MD5 hash of the string as a hexadecimal string.
"""
text_bytes = text.encode('utf-8') # Encode the string to bytes
md5_hash = hashlib.md5(text_bytes).hexdigest()
return md5_hash
```
## Citation
```
@misc{thakur2025relabel,
title={Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval},
author={Nandan Thakur and Crystina Zhang and Xueguang Ma and Jimmy Lin},
year={2025},
eprint={2505.16967},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2505.16967},
}
``` |