--- task_categories: - robotics language: - en tags: - RDT - rdt - RDT 2 - manipulation - bimanual - ur5e - webdatset - vision-language-action license: apache-2.0 --- ## Dataset Summary This dataset provides shards in the **WebDataset** format for fine-tuning [RDT-2](https://rdt-robotics.github.io/rdt2/) or other policy models on **bimanual manipulation**. Each sample packs: * a **binocular RGB image** (left + right wrist cameras concatenated horizontally) * a **relative action chunk** (continuous control, 0.8s, 30Hz) * a **discrete action token sequence** (e.g., from an [Residual VQ action tokenizer](https://huggingface.co/robotics-diffusion-transformer/RVQActionTokenizer)) * a **metadata JSON** with an instruction key `sub_task_instruction_key` to index corresponding instruction from `instructions.json` Data were collected on a **bimanual UR5e** setup. --- ## Supported Tasks * **Instruction-conditioned bimanual manipulation**, including: - Pouring water: different water bottles and cups - Cleaning the desktop: different dustpans and paper balls - Folding towels: towels of different sizes and colors - Stacking cups: cups of different sizes and colors --- ## Data Structure ### Shard layout Shards are named `shard-*.tar`. Inside each shard: ``` shard-000000.tar ├── 0.image.jpg # binocular RGB, H=384, W=768, C=3, uint8 ├── 0.action.npy # relative actions, shape (24, 20), float32 ├── 0.action_token.npy # action tokens, shape (27,), int16 ∈ [0, 1024) ├── 0.meta.json # metadata; includes "sub_task_instruction_key" ├── 1.image.jpg ├── 1.action.npy ├── 1.action_token.npy ├── 1.meta.json └── ... shard-000001.tar shard-000002.tar ... ``` > **Image:** binocular wrist cameras concatenated horizontally → `np.ndarray` of shape `(384, 768, 3)` with `dtype=uint8` (stored as JPEG). > > **Action (continuous):** `np.ndarray` of shape `(24, 20)`, `dtype=float32` (24-step chunk, 20-D control). > > **Action tokens (discrete):** `np.ndarray` of shape `(27,)`, `dtype=int16`, values in `[0, 1024]`. > > **Metadata:** `meta.json` contains at least `sub_task_instruction_key` pointing to an entry in top-level `instructions.json`. --- ## Example Data Instance ```json { "image": "0.image.jpg", "action": "0.action.npy", "action_token": "0.action_token.npy", "meta": { "sub_task_instruction_key": "fold_cloth_step_3" } } ``` --- ## How to Use ### 1) Official Guidelines to fine-tune RDT 2 series Use the example [scripts](https://github.com/thu-ml/RDT2/blob/cf71b69927f726426c928293e37c63c4881b0165/data/utils.py#L48) and [guidelines](https://github.com/thu-ml/RDT2/blob/cf71b69927f726426c928293e37c63c4881b0165/data/utils.py#L48): ### 2) Minimal Loading example ```python import os import glob import json import random import webdataset as wds def no_split(src): yield from src def get_train_dataset(shards_dir): shards = sorted(glob.glob(os.path.join(shards_dir, "shard-*.tar"))) random.shuffle(shards) num_workers = wds.utils.pytorch_worker_info()[-1] workersplitter = wds.split_by_worker if len(shards) > num_workers else no_split assert shards, f"No shards under {shards_dir}" dataset = ( wds.WebDataset( shards, shardshuffle=False, nodesplitter=no_split, workersplitter=workersplitter, resampled=True, ) .repeat() .shuffle(8192, initial=8192) .decode("pil") .map( lambda sample: { "image": sample["image.jpg"], "action_token": sample["action_token.npy"], "meta": sample["meta.json"], } ) .with_epoch(nsamples=(2048 * 30 * 60 * 60)) # 2048 hours ) return dataset with open(os.path.join("", "instructions.json") as fp: instructions = json.load(fp) dataset = get_train_dataset(os.path.join("", "shards")) ``` --- ## Ethical Considerations * Contains robot teleoperation/automation data. No PII is present by design. * Ensure safe deployment/testing on real robots; follow lab safety and manufacturer guidelines. --- ## Citation If you use this dataset, please cite the dataset and your project appropriately. For example: ```bibtex @software{rdt2, title={RDT2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data}, author={RDT Team}, url={https://github.com/thu-ml/RDT2}, month={September}, year={2025} } ``` --- ## License * **Dataset license:** Apache-2.0 (unless otherwise noted by the maintainers of your fork/release). * Ensure compliance when redistributing derived data or models. --- ## Maintainers & Contributions We welcome fixes and improvements to the conversion scripts and docs (see https://github.com/thu-ml/RDT2/tree/main#troubleshooting). Please open issues/PRs with: * OS + Python versions * Minimal repro code * Error tracebacks * Any other helpful context