File size: 17,560 Bytes
0f586c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Modified from:
#   fast-DiT: https://github.com/chuanyangjin/fast-DiT
#   nanoGPT: https://github.com/karpathy/nanoGPT
import warnings
warnings.filterwarnings("ignore")
from PIL import PngImagePlugin
MaximumDecompressedSize = 1024
MegaByte = 2**20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from glob import glob
import time
import argparse
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from utils.distributed import init_distributed_mode
from utils.logger import create_logger
from dataset.build import build_dataset
from dataset.augmentation import center_crop_arr
from autoregressive.train.train_c2i import creat_optimizer

from autoregressive.models.gpt_t2i import GPT_models
from tokenizer.tokenizer_image.vq_model import VQ_models
from accelerate.utils import ProjectConfiguration, set_seed
from pathlib import Path
from accelerate import Accelerator
from language.t5 import T5Embedder
from dataset.t2i_control import build_t2i_control_code
import torch._dynamo
torch._dynamo.config.suppress_errors = True
import random
import torch.nn.functional as F
from condition.hed import HEDdetector
from condition.lineart import LineArt
def random_sample_scale(image, condition=None):
    H = np.arange(384, 1024+16, 16)
    W = np.arange(384, 1024+16, 16)
    resolution = [1024,1024]
    while resolution[0]//16+resolution[1]//16 > 2304:
        resolution = [random.choice(H), random.choice(W)]
    assert resolution[0]//16+resolution[1]//16 <= 2304
    image = F.interpolate(image.to(torch.float32), size=resolution, mode='bilinear', align_corners=False, antialias=True)
    if condition is not None:
        condition = F.interpolate(condition.to(torch.float32), size=resolution, mode='bilinear', align_corners=False, antialias=True)
        return image, condition
    return image


def main(args):
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    
    # Setup DDP:
    init_distributed_mode(args)
    assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)

    
    # Setup an experiment folder:
    if rank == 0:
        os.makedirs(args.results_dir, exist_ok=True)  # Make results folder (holds all experiment subfolders)
        experiment_index = len(glob(f"{args.results_dir}/*"))
        model_string_name = args.gpt_model.replace("/", "-") 
        experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"
        checkpoint_dir = f"{experiment_dir}/checkpoints"
        os.makedirs(checkpoint_dir, exist_ok=True)
        logger = create_logger(experiment_dir)
        logger.info(f"Experiment directory created at {experiment_dir}")

        time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
        cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
        cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
        os.makedirs(cloud_checkpoint_dir, exist_ok=True)
        logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
    
    else:
        logger = create_logger(None)

    # training args
    logger.info(f"{args}")

    # training env
    logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")


    # Setup model
    latent_size = args.image_size // args.downsample_size
    model = GPT_models[args.gpt_model](
        vocab_size=args.vocab_size,
        block_size=latent_size ** 2,
        num_classes=args.num_classes,
        cls_token_num=args.cls_token_num,
        model_type=args.gpt_type,
        resid_dropout_p=args.dropout_p,
        ffn_dropout_p=args.dropout_p,
        token_dropout_p=args.token_dropout_p,
        condition_type=args.condition_type,
    ).to(device)
    logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
    get_condition = LineArt()
    get_condition.load_state_dict(torch.load('/data/vjuicefs_sz_cv_v2/11171709/ControlAR/condition/ckpts/model.pth', map_location=torch.device('cpu')))
    get_condition.to(device)
    
    # Setup optimizer
    optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)

    # Setup data:
    if args.dataset == 't2i_control':     # create and load model
        vq_model = VQ_models[args.vq_model](
            codebook_size=args.codebook_size,
            codebook_embed_dim=args.codebook_embed_dim)
        vq_model.to(device)
        vq_model.eval()
        checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
        vq_model.load_state_dict(checkpoint["model"])
        del checkpoint        
    
    train_dataset = build_t2i_control_code(args)
    sampler = DistributedSampler(
        train_dataset,
        num_replicas=dist.get_world_size(),
        rank=rank,
        shuffle=True,
        seed=args.global_seed
    )

    loader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=False,
        collate_fn=train_dataset.collate_fn,
        batch_size=int(args.global_batch_size // dist.get_world_size()),
        num_workers=args.num_workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=True
    )
    logger.info(f"Dataset contains {len(train_dataset):,} images")

    # Prepare models for training:
    if args.gpt_ckpt:
        checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
        model.load_state_dict(checkpoint["model"], strict=False)
        # optimizer.load_state_dict(checkpoint["optimizer"])
        train_steps = 0#checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
        start_epoch = 0#int(train_steps / int(len(dataset) / args.global_batch_size))
        train_steps = 0#int(start_epoch * int(len(dataset) / args.global_batch_size))
        del checkpoint
        logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
        logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
    else:
        train_steps = 0
        start_epoch = 0

    if not args.no_compile:
        logger.info("compiling the model... (may take several minutes)")
        model = torch.compile(model) # requires PyTorch 2.0        
    # model.zero_init_mlp()
    model = DDP(model.to(device), device_ids=[args.gpu], find_unused_parameters=True)
    model.train()  # important! This enables embedding dropout for classifier-free guidance
    
    ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
    # initialize a GradScaler. If enabled=False scaler is a no-op
    scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
    # Variables for monitoring/logging purposes:
    log_steps = 0
    running_loss = 0
    start_time = time.time()
    # get_condition = HEDdetector().to(device).eval()
    logger.info(f"Training for {args.epochs} epochs...")
    for epoch in range(start_epoch, args.epochs):
        sampler.set_epoch(epoch)
        logger.info(f"Beginning epoch {epoch}...")
        for batch in loader:

            x = batch['code']
            image = batch['image']
            caption_emb = batch['caption_emb']
            condition_img = batch['control']
            condition_img = 2*(condition_img - 0.5)
            attn_mask = batch['attn_mask']
            valid = batch['valid']
            y = caption_emb
            x = x.to(device, non_blocking=True)
            image = image.to(device, non_blocking=True)
            y = y.to(device, non_blocking=True)
            condition_img = condition_img.to(device, non_blocking=True)
            image = random_sample_scale(image)
            with torch.no_grad():
                condition_img = get_condition(image.float()).repeat(1,3,1,1)
                condition_img = 2*(condition_img - 0.5)
           
            if args.dataset == 't2i_control':
                img = 2*(image/255 - 0.5)
                
                with torch.no_grad():
                    _, _, [_, _, indices] = vq_model.encode(img)
                x = indices.reshape(img.shape[0], -1)
            z_indices = x.reshape(x.shape[0], -1)
            c_indices = y.reshape(y.shape[0], y.shape[-2], y.shape[-1])
            assert z_indices.shape[0] == c_indices.shape[0]
            attn_mask = attn_mask.reshape(attn_mask.shape[0], 1, attn_mask.shape[-2], attn_mask.shape[-1]) # (bs, n_head, seq_len, seq_len)
            with torch.cuda.amp.autocast(dtype=ptdtype):  
                _, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices, mask=attn_mask[:, :, :x.shape[1]+120-1,:x.shape[1]+120-1], valid=valid, condition=condition_img.to(ptdtype))
            # backward pass, with gradient scaling if training in fp16         
            scaler.scale(loss).backward()
            if args.max_grad_norm != 0.0:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            # step the optimizer and scaler if training in fp16
            scaler.step(optimizer)
            scaler.update()
            # flush the gradients as soon as we can, no need for this memory anymore
            optimizer.zero_grad(set_to_none=True)

            # Log loss values:
            running_loss += loss.item()
            log_steps += 1
            train_steps += 1
            if train_steps % args.log_every == 0:
                # Measure training speed:
                torch.cuda.synchronize()
                end_time = time.time()
                steps_per_sec = log_steps / (end_time - start_time)
                # Reduce loss history over all processes:
                avg_loss = torch.tensor(running_loss / log_steps, device=device)
                dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
                avg_loss = avg_loss.item() / dist.get_world_size()
                logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
                # Reset monitoring variables:
                running_loss = 0
                log_steps = 0
                start_time = time.time()

            # Save checkpoint:
            if train_steps % args.ckpt_every == 0 and train_steps > 0:
                if rank == 0:
                    if not args.no_compile:
                        model_weight = model.module._orig_mod.state_dict()
                    else:
                        model_weight = model.module.state_dict()  
                    checkpoint = {
                        "model": model_weight,
                        "steps": train_steps,
                        "args": args
                    }
                    if not args.no_local_save:
                        checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
                        torch.save(checkpoint, checkpoint_path)
                        logger.info(f"Saved checkpoint to {checkpoint_path}")
                    
                    cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
                    torch.save(checkpoint, cloud_checkpoint_path)
                    logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
                dist.barrier()

    model.eval()  # important! This disables randomized embedding dropout
    # do any sampling/FID calculation/etc. with ema (or model) in eval mode ...

    logger.info("Done!")
    dist.destroy_process_group()



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, required=False)
    parser.add_argument("--t5-feat-path", type=str, required=False)
    parser.add_argument("--short-t5-feat-path", type=str, default=None, help="short caption of t5_feat_path")
    parser.add_argument("--cloud-save-path", type=str, required=False, help='please specify a cloud disk path, if not, local path')
    parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
    parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
    parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
    parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
    parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
    parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
    parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
    parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i")
    parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
    parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
    parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
    parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
    parser.add_argument("--drop-path", type=float, default=0.0, help="drop_path_rate of attention and ffn")
    parser.add_argument("--no-compile", action='store_true')
    parser.add_argument("--results-dir", type=str, default="results")
    parser.add_argument("--dataset", type=str, default='t2i_control')
    parser.add_argument("--image-size", type=int, choices=[256, 384, 512, 768, 832, 896, 960], default=384)
    parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
    parser.add_argument("--num-classes", type=int, default=1000)
    parser.add_argument("--epochs", type=int, default=15)
    parser.add_argument("--lr", type=float, default=1e-5)
    parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use.")
    parser.add_argument("--beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--beta2", type=float, default=0.95, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--global-batch-size", type=int, default=16)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=24)
    parser.add_argument("--log-every", type=int, default=100)
    parser.add_argument("--ckpt-every", type=int, default=30000)
    parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
    parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) 
    
    parser.add_argument("--code-path", type=str, required=True)
    parser.add_argument("--code-path2", type=str, default=None)
    parser.add_argument("--condition-type", type=str, choices=['segmentation', 'canny', 'hed', 'lineart', 'depth'], default="lineart")
    parser.add_argument("--get-image", type=bool, default=True)
    parser.add_argument("--get-prompt", type=bool, default=False)
    parser.add_argument("--get-label", type=bool, default=False)
    parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
    parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
    parser.add_argument("--t5-feature-max-len", type=int, default=120)
    parser.add_argument("--t5-feature-dim", type=int, default=2048)
    parser.add_argument("--keep_in_memory",type=bool,default=False)
    parser.add_argument("--wrong_ids_file",type=str,default=None)
    parser.add_argument("--logging_dir",type=str,default="logs")
    parser.add_argument("--report_to",type=str,default="wandb")
    parser.add_argument("--task_name",type=str,default='segmentation')
    parser.add_argument("--dataset_name",type=str,default=None)
    parser.add_argument("--dataset_config_name",type=str,default=None)
    
    parser.add_argument("--image_column", type=str, default="image", help="The column of the dataset containing the target image.")
    parser.add_argument("--conditioning_image_column",type=str,default="control_seg",help="The column of the dataset containing the controlnet conditioning image.")
    parser.add_argument("--caption_column",type=str,default="prompt",help="The column of the dataset containing a caption or a list of captions.")
    parser.add_argument("--label_column",type=str,default=None,help="The column of the dataset containing the original labels. `seg_map` for ADE20K; `panoptic_seg_map` for COCO-Stuff.")
    parser.add_argument("--max_train_samples",type=int,default=None)
    parser.add_argument("--image_condition_dropout",type=float,default=0)
    parser.add_argument("--text_condition_dropout",type=float,default=0)
    parser.add_argument("--all_condition_dropout",type=float,default=0)
    
    args = parser.parse_args()
    main(args)