File size: 17,560 Bytes
0f586c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Modified from:
# fast-DiT: https://github.com/chuanyangjin/fast-DiT
# nanoGPT: https://github.com/karpathy/nanoGPT
import warnings
warnings.filterwarnings("ignore")
from PIL import PngImagePlugin
MaximumDecompressedSize = 1024
MegaByte = 2**20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from glob import glob
import time
import argparse
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from utils.distributed import init_distributed_mode
from utils.logger import create_logger
from dataset.build import build_dataset
from dataset.augmentation import center_crop_arr
from autoregressive.train.train_c2i import creat_optimizer
from autoregressive.models.gpt_t2i import GPT_models
from tokenizer.tokenizer_image.vq_model import VQ_models
from accelerate.utils import ProjectConfiguration, set_seed
from pathlib import Path
from accelerate import Accelerator
from language.t5 import T5Embedder
from dataset.t2i_control import build_t2i_control_code
import torch._dynamo
torch._dynamo.config.suppress_errors = True
import random
import torch.nn.functional as F
from condition.hed import HEDdetector
from condition.lineart import LineArt
def random_sample_scale(image, condition=None):
H = np.arange(384, 1024+16, 16)
W = np.arange(384, 1024+16, 16)
resolution = [1024,1024]
while resolution[0]//16+resolution[1]//16 > 2304:
resolution = [random.choice(H), random.choice(W)]
assert resolution[0]//16+resolution[1]//16 <= 2304
image = F.interpolate(image.to(torch.float32), size=resolution, mode='bilinear', align_corners=False, antialias=True)
if condition is not None:
condition = F.interpolate(condition.to(torch.float32), size=resolution, mode='bilinear', align_corners=False, antialias=True)
return image, condition
return image
def main(args):
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup DDP:
init_distributed_mode(args)
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# Setup an experiment folder:
if rank == 0:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.gpt_model.replace("/", "-")
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"
checkpoint_dir = f"{experiment_dir}/checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
else:
logger = create_logger(None)
# training args
logger.info(f"{args}")
# training env
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# Setup model
latent_size = args.image_size // args.downsample_size
model = GPT_models[args.gpt_model](
vocab_size=args.vocab_size,
block_size=latent_size ** 2,
num_classes=args.num_classes,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
resid_dropout_p=args.dropout_p,
ffn_dropout_p=args.dropout_p,
token_dropout_p=args.token_dropout_p,
condition_type=args.condition_type,
).to(device)
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
get_condition = LineArt()
get_condition.load_state_dict(torch.load('/data/vjuicefs_sz_cv_v2/11171709/ControlAR/condition/ckpts/model.pth', map_location=torch.device('cpu')))
get_condition.to(device)
# Setup optimizer
optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)
# Setup data:
if args.dataset == 't2i_control': # create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
train_dataset = build_t2i_control_code(args)
sampler = DistributedSampler(
train_dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed
)
loader = torch.utils.data.DataLoader(
train_dataset,
shuffle=False,
collate_fn=train_dataset.collate_fn,
batch_size=int(args.global_batch_size // dist.get_world_size()),
num_workers=args.num_workers,
pin_memory=True,
sampler=sampler,
drop_last=True
)
logger.info(f"Dataset contains {len(train_dataset):,} images")
# Prepare models for training:
if args.gpt_ckpt:
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
# optimizer.load_state_dict(checkpoint["optimizer"])
train_steps = 0#checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
start_epoch = 0#int(train_steps / int(len(dataset) / args.global_batch_size))
train_steps = 0#int(start_epoch * int(len(dataset) / args.global_batch_size))
del checkpoint
logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
else:
train_steps = 0
start_epoch = 0
if not args.no_compile:
logger.info("compiling the model... (may take several minutes)")
model = torch.compile(model) # requires PyTorch 2.0
# model.zero_init_mlp()
model = DDP(model.to(device), device_ids=[args.gpu], find_unused_parameters=True)
model.train() # important! This enables embedding dropout for classifier-free guidance
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
# Variables for monitoring/logging purposes:
log_steps = 0
running_loss = 0
start_time = time.time()
# get_condition = HEDdetector().to(device).eval()
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(start_epoch, args.epochs):
sampler.set_epoch(epoch)
logger.info(f"Beginning epoch {epoch}...")
for batch in loader:
x = batch['code']
image = batch['image']
caption_emb = batch['caption_emb']
condition_img = batch['control']
condition_img = 2*(condition_img - 0.5)
attn_mask = batch['attn_mask']
valid = batch['valid']
y = caption_emb
x = x.to(device, non_blocking=True)
image = image.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
condition_img = condition_img.to(device, non_blocking=True)
image = random_sample_scale(image)
with torch.no_grad():
condition_img = get_condition(image.float()).repeat(1,3,1,1)
condition_img = 2*(condition_img - 0.5)
if args.dataset == 't2i_control':
img = 2*(image/255 - 0.5)
with torch.no_grad():
_, _, [_, _, indices] = vq_model.encode(img)
x = indices.reshape(img.shape[0], -1)
z_indices = x.reshape(x.shape[0], -1)
c_indices = y.reshape(y.shape[0], y.shape[-2], y.shape[-1])
assert z_indices.shape[0] == c_indices.shape[0]
attn_mask = attn_mask.reshape(attn_mask.shape[0], 1, attn_mask.shape[-2], attn_mask.shape[-1]) # (bs, n_head, seq_len, seq_len)
with torch.cuda.amp.autocast(dtype=ptdtype):
_, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices, mask=attn_mask[:, :, :x.shape[1]+120-1,:x.shape[1]+120-1], valid=valid, condition=condition_img.to(ptdtype))
# backward pass, with gradient scaling if training in fp16
scaler.scale(loss).backward()
if args.max_grad_norm != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# Log loss values:
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time.time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time.time()
# Save checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if rank == 0:
if not args.no_compile:
model_weight = model.module._orig_mod.state_dict()
else:
model_weight = model.module.state_dict()
checkpoint = {
"model": model_weight,
"steps": train_steps,
"args": args
}
if not args.no_local_save:
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, cloud_checkpoint_path)
logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
dist.barrier()
model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, required=False)
parser.add_argument("--t5-feat-path", type=str, required=False)
parser.add_argument("--short-t5-feat-path", type=str, default=None, help="short caption of t5_feat_path")
parser.add_argument("--cloud-save-path", type=str, required=False, help='please specify a cloud disk path, if not, local path')
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i")
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
parser.add_argument("--drop-path", type=float, default=0.0, help="drop_path_rate of attention and ffn")
parser.add_argument("--no-compile", action='store_true')
parser.add_argument("--results-dir", type=str, default="results")
parser.add_argument("--dataset", type=str, default='t2i_control')
parser.add_argument("--image-size", type=int, choices=[256, 384, 512, 768, 832, 896, 960], default=384)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--epochs", type=int, default=15)
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use.")
parser.add_argument("--beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--beta2", type=float, default=0.95, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--global-batch-size", type=int, default=16)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=24)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument("--ckpt-every", type=int, default=30000)
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--code-path", type=str, required=True)
parser.add_argument("--code-path2", type=str, default=None)
parser.add_argument("--condition-type", type=str, choices=['segmentation', 'canny', 'hed', 'lineart', 'depth'], default="lineart")
parser.add_argument("--get-image", type=bool, default=True)
parser.add_argument("--get-prompt", type=bool, default=False)
parser.add_argument("--get-label", type=bool, default=False)
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
parser.add_argument("--t5-feature-max-len", type=int, default=120)
parser.add_argument("--t5-feature-dim", type=int, default=2048)
parser.add_argument("--keep_in_memory",type=bool,default=False)
parser.add_argument("--wrong_ids_file",type=str,default=None)
parser.add_argument("--logging_dir",type=str,default="logs")
parser.add_argument("--report_to",type=str,default="wandb")
parser.add_argument("--task_name",type=str,default='segmentation')
parser.add_argument("--dataset_name",type=str,default=None)
parser.add_argument("--dataset_config_name",type=str,default=None)
parser.add_argument("--image_column", type=str, default="image", help="The column of the dataset containing the target image.")
parser.add_argument("--conditioning_image_column",type=str,default="control_seg",help="The column of the dataset containing the controlnet conditioning image.")
parser.add_argument("--caption_column",type=str,default="prompt",help="The column of the dataset containing a caption or a list of captions.")
parser.add_argument("--label_column",type=str,default=None,help="The column of the dataset containing the original labels. `seg_map` for ADE20K; `panoptic_seg_map` for COCO-Stuff.")
parser.add_argument("--max_train_samples",type=int,default=None)
parser.add_argument("--image_condition_dropout",type=float,default=0)
parser.add_argument("--text_condition_dropout",type=float,default=0)
parser.add_argument("--all_condition_dropout",type=float,default=0)
args = parser.parse_args()
main(args)
|