wxy-ControlAR / autoregressive /train /train_t2i_seg_multiscale.py
slz1's picture
Add files using upload-large-folder tool
0f586c0 verified
# Modified from:
# fast-DiT: https://github.com/chuanyangjin/fast-DiT
# nanoGPT: https://github.com/karpathy/nanoGPT
import warnings
warnings.filterwarnings("ignore")
from PIL import PngImagePlugin
MaximumDecompressedSize = 1024
MegaByte = 2**20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from glob import glob
import time
import argparse
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from utils.distributed import init_distributed_mode
from utils.logger import create_logger
from dataset.build import build_dataset
from dataset.augmentation import center_crop_arr
from autoregressive.train.train_c2i import creat_optimizer
from autoregressive.models.gpt_t2i import GPT_models
from tokenizer.tokenizer_image.vq_model import VQ_models
from accelerate.utils import ProjectConfiguration, set_seed
from pathlib import Path
from accelerate import Accelerator
from language.t5 import T5Embedder
from dataset.t2i_control import build_t2i_control_code
import torch._dynamo
torch._dynamo.config.suppress_errors = True
import random
import torch.nn.functional as F
from condition.hed import HEDdetector
def random_sample_scale(image, condition=None):
H = np.arange(384, 1024+16, 16)
W = np.arange(384, 1024+16, 16)
resolution = [1024,1024]
while resolution[0]//16+resolution[1]//16 > 2304:
resolution = [random.choice(H), random.choice(W)]
assert resolution[0]//16+resolution[1]//16 <= 2304
image = F.interpolate(image.to(torch.float32), size=resolution, mode='bilinear', align_corners=False, antialias=True)
if condition is not None:
condition = F.interpolate(condition.to(torch.float32), size=resolution, mode='bilinear', align_corners=False, antialias=True)
return image, condition
return image
def main(args):
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup DDP:
init_distributed_mode(args)
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# Setup an experiment folder:
if rank == 0:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.gpt_model.replace("/", "-")
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"
checkpoint_dir = f"{experiment_dir}/checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
else:
logger = create_logger(None)
# training args
logger.info(f"{args}")
# training env
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# Setup model
latent_size = args.image_size // args.downsample_size
model = GPT_models[args.gpt_model](
vocab_size=args.vocab_size,
block_size=latent_size ** 2,
num_classes=args.num_classes,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
resid_dropout_p=args.dropout_p,
ffn_dropout_p=args.dropout_p,
token_dropout_p=args.token_dropout_p,
condition_type=args.condition_type,
).to(device)
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
# Setup optimizer
optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)
# Setup data:
if args.dataset == 't2i_control': # create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
train_dataset = build_t2i_control_code(args)
sampler = DistributedSampler(
train_dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed
)
loader = torch.utils.data.DataLoader(
train_dataset,
shuffle=False,
collate_fn=train_dataset.collate_fn,
batch_size=int(args.global_batch_size // dist.get_world_size()),
num_workers=args.num_workers,
pin_memory=True,
sampler=sampler,
drop_last=True
)
logger.info(f"Dataset contains {len(train_dataset):,} images")
# Prepare models for training:
if args.gpt_ckpt:
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
# optimizer.load_state_dict(checkpoint["optimizer"])
train_steps = 0#checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
start_epoch = 0#int(train_steps / int(len(dataset) / args.global_batch_size))
train_steps = 0#int(start_epoch * int(len(dataset) / args.global_batch_size))
del checkpoint
logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
else:
train_steps = 0
start_epoch = 0
if not args.no_compile:
logger.info("compiling the model... (may take several minutes)")
model = torch.compile(model) # requires PyTorch 2.0
model = DDP(model.to(device), device_ids=[args.gpu], find_unused_parameters=True)
model.train() # important! This enables embedding dropout for classifier-free guidance
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
# Variables for monitoring/logging purposes:
log_steps = 0
running_loss = 0
start_time = time.time()
get_condition = HEDdetector().to(device).eval()
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(start_epoch, args.epochs):
sampler.set_epoch(epoch)
logger.info(f"Beginning epoch {epoch}...")
for batch in loader:
x = batch['code']
image = batch['image']
caption_emb = batch['caption_emb']
condition_img = batch['control']
condition_img = 2*(condition_img - 0.5)
attn_mask = batch['attn_mask']
valid = batch['valid']
y = caption_emb
x = x.to(device, non_blocking=True)
image = image.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
condition_img = condition_img.to(device, non_blocking=True)
with torch.no_grad():
condition_img = get_condition(image).unsqueeze(1).repeat(1,3,1,1)
condition_img = 2*(condition_img/255 - 0.5)
image, condition_img = random_sample_scale(image, condition_img)
if args.dataset == 't2i_control':
img = 2*(image/255 - 0.5)
with torch.no_grad():
_, _, [_, _, indices] = vq_model.encode(img)
x = indices.reshape(img.shape[0], -1)
z_indices = x.reshape(x.shape[0], -1)
c_indices = y.reshape(y.shape[0], y.shape[-2], y.shape[-1])
assert z_indices.shape[0] == c_indices.shape[0]
attn_mask = attn_mask.reshape(attn_mask.shape[0], 1, attn_mask.shape[-2], attn_mask.shape[-1]) # (bs, n_head, seq_len, seq_len)
with torch.cuda.amp.autocast(dtype=ptdtype):
_, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices, mask=attn_mask[:, :, :x.shape[1]+120-1,:x.shape[1]+120-1], valid=valid, condition=condition_img.to(ptdtype))
# backward pass, with gradient scaling if training in fp16
scaler.scale(loss).backward()
if args.max_grad_norm != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# Log loss values:
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time.time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time.time()
# Save checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if rank == 0:
if not args.no_compile:
model_weight = model.module._orig_mod.state_dict()
else:
model_weight = model.module.state_dict()
checkpoint = {
"model": model_weight,
"steps": train_steps,
"args": args
}
if not args.no_local_save:
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, cloud_checkpoint_path)
logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
dist.barrier()
model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, required=False)
parser.add_argument("--t5-feat-path", type=str, required=False)
parser.add_argument("--short-t5-feat-path", type=str, default=None, help="short caption of t5_feat_path")
parser.add_argument("--cloud-save-path", type=str, required=False, help='please specify a cloud disk path, if not, local path')
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i")
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
parser.add_argument("--drop-path", type=float, default=0.0, help="drop_path_rate of attention and ffn")
parser.add_argument("--no-compile", action='store_true')
parser.add_argument("--results-dir", type=str, default="results")
parser.add_argument("--dataset", type=str, default='t2i_control')
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--epochs", type=int, default=50)
parser.add_argument("--lr", type=float, default=5e-5)
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use.")
parser.add_argument("--beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--beta2", type=float, default=0.95, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--global-batch-size", type=int, default=64)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=24)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument("--ckpt-every", type=int, default=2000)
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--code-path", type=str, required=True)
parser.add_argument("--code-path2", type=str, default=None)
parser.add_argument("--condition-type", type=str, choices=['segmentation', 'canny', 'hed', 'lineart', 'depth'], default="segmentation")
parser.add_argument("--get-image", type=bool, default=True)
parser.add_argument("--get-prompt", type=bool, default=False)
parser.add_argument("--get-label", type=bool, default=False)
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
parser.add_argument("--t5-feature-max-len", type=int, default=120)
parser.add_argument("--t5-feature-dim", type=int, default=2048)
parser.add_argument("--keep_in_memory",type=bool,default=False)
parser.add_argument("--wrong_ids_file",type=str,default=None)
parser.add_argument("--logging_dir",type=str,default="logs")
parser.add_argument("--report_to",type=str,default="wandb")
parser.add_argument("--task_name",type=str,default='segmentation')
parser.add_argument("--dataset_name",type=str,default=None)
parser.add_argument("--dataset_config_name",type=str,default=None)
parser.add_argument("--image_column", type=str, default="image", help="The column of the dataset containing the target image.")
parser.add_argument("--conditioning_image_column",type=str,default="control_seg",help="The column of the dataset containing the controlnet conditioning image.")
parser.add_argument("--caption_column",type=str,default="prompt",help="The column of the dataset containing a caption or a list of captions.")
parser.add_argument("--label_column",type=str,default=None,help="The column of the dataset containing the original labels. `seg_map` for ADE20K; `panoptic_seg_map` for COCO-Stuff.")
parser.add_argument("--max_train_samples",type=int,default=None)
parser.add_argument("--image_condition_dropout",type=float,default=0)
parser.add_argument("--text_condition_dropout",type=float,default=0)
parser.add_argument("--all_condition_dropout",type=float,default=0)
args = parser.parse_args()
main(args)