|
from controlnet_aux import LineartDetector |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
import torch.nn as nn |
|
|
|
|
|
norm_layer = nn.InstanceNorm2d |
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_features): |
|
super(ResidualBlock, self).__init__() |
|
|
|
conv_block = [ nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features), |
|
nn.ReLU(inplace=True), |
|
nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features) |
|
] |
|
|
|
self.conv_block = nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
return x + self.conv_block(x) |
|
class LineArt(nn.Module): |
|
def __init__(self, input_nc=3, output_nc=1, n_residual_blocks=3, sigmoid=True): |
|
super(LineArt, self).__init__() |
|
|
|
|
|
model0 = [ nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, 64, 7), |
|
norm_layer(64), |
|
nn.ReLU(inplace=True) ] |
|
self.model0 = nn.Sequential(*model0) |
|
|
|
|
|
model1 = [] |
|
in_features = 64 |
|
out_features = in_features*2 |
|
for _ in range(2): |
|
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True) ] |
|
in_features = out_features |
|
out_features = in_features*2 |
|
self.model1 = nn.Sequential(*model1) |
|
|
|
model2 = [] |
|
|
|
for _ in range(n_residual_blocks): |
|
model2 += [ResidualBlock(in_features)] |
|
self.model2 = nn.Sequential(*model2) |
|
|
|
|
|
model3 = [] |
|
out_features = in_features//2 |
|
for _ in range(2): |
|
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True) ] |
|
in_features = out_features |
|
out_features = in_features//2 |
|
self.model3 = nn.Sequential(*model3) |
|
|
|
|
|
model4 = [ nn.ReflectionPad2d(3), |
|
nn.Conv2d(64, output_nc, 7)] |
|
if sigmoid: |
|
model4 += [nn.Sigmoid()] |
|
|
|
self.model4 = nn.Sequential(*model4) |
|
|
|
def forward(self, x, cond=None): |
|
""" |
|
input: tensor (B,C,H,W) |
|
output: tensor (B,1,H,W) 0~1 |
|
""" |
|
|
|
out = self.model0(x) |
|
out = self.model1(out) |
|
out = self.model2(out) |
|
out = self.model3(out) |
|
out = self.model4(out) |
|
|
|
return out |
|
|
|
|
|
if __name__ == '__main__': |
|
import matplotlib.pyplot as plt |
|
from tqdm import tqdm |
|
apply_lineart = LineArt() |
|
apply_lineart.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu'))) |
|
img = cv2.imread('condition/car_448_768.jpg') |
|
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0).repeat(8,1,1,1).float() |
|
detected_map = apply_lineart(img) |
|
print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min()) |
|
cv2.imwrite('condition/example_lineart.jpg', 255*detected_map[0,0].cpu().detach().numpy()) |