|
|
|
|
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import sys |
|
sys.path.append('/data/vjuicefs_sz_cv_v2/11171709/ControlAR') |
|
from einops import rearrange |
|
|
|
from condition.utils import annotator_ckpts_path |
|
from condition.midas.midas.dpt_depth import DPTDepthModel |
|
from condition.midas.midas.midas_net import MidasNet |
|
from condition.midas.midas.midas_net_custom import MidasNet_small |
|
from condition.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet |
|
import os |
|
import torch.nn as nn |
|
from torchvision.transforms import Compose |
|
|
|
ISL_PATHS = { |
|
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"), |
|
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"), |
|
"midas_v21": "", |
|
"midas_v21_small": "", |
|
} |
|
|
|
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def load_midas_transform(model_type): |
|
|
|
|
|
if model_type == "dpt_large": |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_hybrid": |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "midas_v21": |
|
net_w, net_h = 384, 384 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
elif model_type == "midas_v21_small": |
|
net_w, net_h = 256, 256 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
else: |
|
assert False, f"model_type '{model_type}' not implemented, use: --model_type large" |
|
|
|
transform = Compose( |
|
[ |
|
Resize( |
|
net_w, |
|
net_h, |
|
resize_target=None, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=32, |
|
resize_method=resize_mode, |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
normalization, |
|
PrepareForNet(), |
|
] |
|
) |
|
|
|
return transform |
|
|
|
|
|
def load_model(model_type): |
|
|
|
|
|
model_path = ISL_PATHS[model_type] |
|
if model_type == "dpt_large": |
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="vitl16_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "dpt_hybrid": |
|
if not os.path.exists(model_path): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) |
|
|
|
model = DPTDepthModel( |
|
path=model_path, |
|
backbone="vitb_rn50_384", |
|
non_negative=True, |
|
) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "minimal" |
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
|
elif model_type == "midas_v21": |
|
model = MidasNet(model_path, non_negative=True) |
|
net_w, net_h = 384, 384 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
elif model_type == "midas_v21_small": |
|
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, |
|
non_negative=True, blocks={'expand': True}) |
|
net_w, net_h = 256, 256 |
|
resize_mode = "upper_bound" |
|
normalization = NormalizeImage( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
else: |
|
print(f"model_type '{model_type}' not implemented, use: --model_type large") |
|
assert False |
|
|
|
transform = Compose( |
|
[ |
|
Resize( |
|
net_w, |
|
net_h, |
|
resize_target=None, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=32, |
|
resize_method=resize_mode, |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
normalization, |
|
PrepareForNet(), |
|
] |
|
) |
|
|
|
return model.eval(), transform |
|
|
|
|
|
class MiDaSInference(nn.Module): |
|
MODEL_TYPES_TORCH_HUB = [ |
|
"DPT_Large", |
|
"DPT_Hybrid", |
|
"MiDaS_small" |
|
] |
|
MODEL_TYPES_ISL = [ |
|
"dpt_large", |
|
"dpt_hybrid", |
|
"midas_v21", |
|
"midas_v21_small", |
|
] |
|
|
|
def __init__(self, model_type): |
|
super().__init__() |
|
assert (model_type in self.MODEL_TYPES_ISL) |
|
model, _ = load_model(model_type) |
|
self.model = model |
|
self.model.train = disabled_train |
|
|
|
def forward(self, x): |
|
with torch.no_grad(): |
|
prediction = self.model(x) |
|
return prediction |
|
|
|
|
|
class MidasDetector: |
|
def __init__(self,device=torch.device('cuda:0'), model_type="dpt_hybrid"): |
|
self.device = device |
|
self.model = MiDaSInference(model_type=model_type).to(device) |
|
|
|
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1): |
|
assert input_image.ndim == 3 |
|
image_depth = input_image |
|
with torch.no_grad(): |
|
image_depth = image_depth |
|
image_depth = image_depth / 127.5 - 1.0 |
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') |
|
depth = self.model(image_depth)[0] |
|
|
|
depth_pt = depth.clone() |
|
depth_pt -= torch.min(depth_pt) |
|
depth_pt /= torch.max(depth_pt) |
|
depth_pt = depth_pt.cpu().numpy() |
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
depth_np = depth.cpu().numpy() |
|
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) |
|
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) |
|
z = np.ones_like(x) * a |
|
x[depth_pt < bg_th] = 0 |
|
y[depth_pt < bg_th] = 0 |
|
|
|
|
|
|
|
|
|
return depth_image |
|
|
|
if __name__ == '__main__': |
|
import matplotlib.pyplot as plt |
|
from tqdm import tqdm |
|
from PIL import Image |
|
import torchvision.transforms.functional as F |
|
apply_depth = MidasDetector(device=torch.device('cuda:0')) |
|
img = cv2.imread('/data/vjuicefs_sz_cv_v2/11171709/ControlAR_github/condition/example/t2i/multi_resolution/car_1_448_768.jpg') |
|
img = cv2.resize(img,(768,448)) |
|
detected_map = apply_depth(torch.from_numpy(img).cuda().float()) |
|
print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min()) |
|
plt.imshow(detected_map, cmap='gray') |
|
plt.show() |
|
cv2.imwrite('condition/example_depth.jpg', detected_map) |
|
|
|
|