|
import matplotlib.pyplot as plt |
|
from tqdm import tqdm |
|
from transformers import DPTImageProcessor, DPTForDepthEstimation |
|
from PIL import Image |
|
import os |
|
import sys |
|
import torch |
|
import numpy as np |
|
from torch.utils.data import DataLoader, Dataset |
|
current_directory = os.getcwd() |
|
sys.path.append(current_directory) |
|
from autoregressive.test.metric import RMSE, SSIM, F1score |
|
import torch.nn.functional as F |
|
from condition.hed import HEDdetector |
|
from condition.canny import CannyDetector |
|
from torchmetrics.classification import BinaryF1Score |
|
|
|
class ImageDataset(Dataset): |
|
def __init__(self, img_dir, label_dir): |
|
self.img_dir = img_dir |
|
self.label_dir = label_dir |
|
self.images = os.listdir(img_dir) |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def __getitem__(self, idx): |
|
img_path = os.path.join(self.img_dir, self.images[idx]) |
|
label_path = os.path.join(self.label_dir, self.images[idx]) |
|
|
|
image = np.array(Image.open(img_path).convert("RGB")) |
|
label = np.array(Image.open(label_path)) |
|
return torch.from_numpy(image), torch.from_numpy(label).permute(2, 0, 1) |
|
|
|
model = CannyDetector() |
|
|
|
img_dir = 'sample/multigen/canny/visualization' |
|
label_dir = 'sample/multigen/canny/annotations' |
|
dataset = ImageDataset(img_dir, label_dir) |
|
data_loader = DataLoader(dataset, batch_size=16, shuffle=False, num_workers=4) |
|
|
|
|
|
f1score = BinaryF1Score() |
|
f1 = [] |
|
i = 0 |
|
with torch.no_grad(): |
|
for images, labels in tqdm(data_loader): |
|
i += 1 |
|
images = images |
|
outputs = [] |
|
for img in images: |
|
outputs.append(model(img)) |
|
|
|
predicted_canny = outputs |
|
labels = labels[:, 0, :, :].numpy() |
|
|
|
for pred, label in zip(predicted_canny, labels): |
|
pred[pred == 255] = 1 |
|
label[label == 255] = 1 |
|
f1.append(f1score(torch.from_numpy(pred).flatten(), torch.from_numpy(label).flatten()).item()) |
|
|
|
print(f'f1score: {np.array(f1).mean()}') |