|
import matplotlib.pyplot as plt |
|
from tqdm import tqdm |
|
from transformers import DPTImageProcessor, DPTForDepthEstimation |
|
from PIL import Image |
|
import os |
|
import torch |
|
import numpy as np |
|
from torch.utils.data import DataLoader, Dataset |
|
import sys |
|
current_directory = os.getcwd() |
|
sys.path.append(current_directory) |
|
from autoregressive.test.metric import RMSE |
|
import torch.nn.functional as F |
|
|
|
class ImageDataset(Dataset): |
|
def __init__(self, img_dir, label_dir): |
|
self.img_dir = img_dir |
|
self.label_dir = label_dir |
|
self.images = os.listdir(img_dir) |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def __getitem__(self, idx): |
|
img_path = os.path.join(self.img_dir, self.images[idx]) |
|
label_path = os.path.join(self.label_dir, self.images[idx]) |
|
image = Image.open(img_path).convert("RGB") |
|
label = np.array(Image.open(label_path)) |
|
|
|
return np.array(image), torch.from_numpy(label).permute(2, 0, 1) |
|
|
|
|
|
processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large") |
|
model = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large").cuda() |
|
|
|
|
|
img_dir = 'sample/multigen/depth/visualization' |
|
label_dir = 'sample/multigen/depth/annotations' |
|
dataset = ImageDataset(img_dir, label_dir) |
|
data_loader = DataLoader(dataset, batch_size=16, shuffle=False, num_workers=4) |
|
|
|
|
|
metric = RMSE() |
|
|
|
|
|
model.eval() |
|
rmse = [] |
|
with torch.no_grad(): |
|
for images, labels in tqdm(data_loader): |
|
inputs = processor(images=images, return_tensors="pt", size=(512,512)).to('cuda:0') |
|
outputs = model(**inputs) |
|
|
|
predicted_depth = outputs.predicted_depth |
|
predicted_depth = predicted_depth.squeeze().cpu() |
|
labels = labels[:, 0, :, :] |
|
|
|
for pred, label in zip(predicted_depth, labels): |
|
|
|
pred = (pred * 255 / pred.max()) |
|
per_pixel_mse = torch.sqrt(F.mse_loss(pred.float(), label.float())) |
|
rmse.append(per_pixel_mse) |
|
print(np.array(rmse).mean()) |