Add files using upload-large-folder tool
Browse files- .DS_Store +0 -0
- .gitignore +162 -0
- LICENSE +201 -0
- README.md +362 -0
- assets/comparison.png +3 -0
- assets/logo.jpeg +3 -0
- assets/vis.png +3 -0
- autoregressive/models/README.md +7 -0
- autoregressive/models/dinov2_adapter.py +36 -0
- autoregressive/models/generate.py +204 -0
- autoregressive/models/gpt.py +550 -0
- autoregressive/models/gpt_t2i.py +569 -0
- autoregressive/models/vit_adapter.py +26 -0
- autoregressive/sample/sample_c2i_ddp.py +188 -0
- autoregressive/sample/sample_t2i_ddp.py +229 -0
- autoregressive/serve/llm.py +267 -0
- create_npz.py +30 -0
- hfd.sh +328 -0
- requirements.txt +22 -0
- scripts/tokenizer/train_vq_finetune.sh +14 -0
- scripts/tokenizer/train_vq_finetune_continue.sh +15 -0
- scripts/tokenizer/val.sh +8 -0
- test_dataset_t2icontrol.py +55 -0
- tokenizer/consistencydecoder/README.md +14 -0
- tokenizer/consistencydecoder/reconstruction_cd_ddp.py +208 -0
- tokenizer/tokenizer_image/discriminator.py +255 -0
- tokenizer/tokenizer_image/discriminator_patchgan.py +152 -0
- tokenizer/tokenizer_image/discriminator_stylegan.py +101 -0
- tokenizer/tokenizer_image/lpips.py +164 -0
- tokenizer/tokenizer_image/reconstruction_vq_ddp.py +207 -0
- tokenizer/tokenizer_image/vq_demo.py +84 -0
- tokenizer/tokenizer_image/vq_loss.py +168 -0
- tokenizer/tokenizer_image/vq_model.py +425 -0
- tokenizer/vae/README.md +14 -0
- tokenizer/vae/reconstruction_vae_ddp.py +210 -0
- tokenizer/vae/sd_vae_demo.py +57 -0
- tokenizer/validation/val_ddp.py +165 -0
- tools/openimage_json.py +75 -0
- tools/push_vae_to_hf.py +48 -0
- utils/__init__.py +0 -0
- utils/__pycache__/__init__.cpython-310.pyc +0 -0
- utils/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/__pycache__/distributed.cpython-310.pyc +0 -0
- utils/__pycache__/distributed.cpython-38.pyc +0 -0
- utils/deepspeed.py +87 -0
- utils/distributed.py +58 -0
- utils/drop_path.py +36 -0
- utils/ema.py +22 -0
- utils/logger.py +19 -0
- utils/video.py +116 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
| 110 |
+
.pdm.toml
|
| 111 |
+
.pdm-python
|
| 112 |
+
.pdm-build/
|
| 113 |
+
|
| 114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 115 |
+
__pypackages__/
|
| 116 |
+
|
| 117 |
+
# Celery stuff
|
| 118 |
+
celerybeat-schedule
|
| 119 |
+
celerybeat.pid
|
| 120 |
+
|
| 121 |
+
# SageMath parsed files
|
| 122 |
+
*.sage.py
|
| 123 |
+
|
| 124 |
+
# Environments
|
| 125 |
+
.env
|
| 126 |
+
.venv
|
| 127 |
+
env/
|
| 128 |
+
venv/
|
| 129 |
+
ENV/
|
| 130 |
+
env.bak/
|
| 131 |
+
venv.bak/
|
| 132 |
+
|
| 133 |
+
# Spyder project settings
|
| 134 |
+
.spyderproject
|
| 135 |
+
.spyproject
|
| 136 |
+
|
| 137 |
+
# Rope project settings
|
| 138 |
+
.ropeproject
|
| 139 |
+
|
| 140 |
+
# mkdocs documentation
|
| 141 |
+
/site
|
| 142 |
+
|
| 143 |
+
# mypy
|
| 144 |
+
.mypy_cache/
|
| 145 |
+
.dmypy.json
|
| 146 |
+
dmypy.json
|
| 147 |
+
|
| 148 |
+
# Pyre type checker
|
| 149 |
+
.pyre/
|
| 150 |
+
|
| 151 |
+
# pytype static type analyzer
|
| 152 |
+
.pytype/
|
| 153 |
+
|
| 154 |
+
# Cython debug symbols
|
| 155 |
+
cython_debug/
|
| 156 |
+
|
| 157 |
+
# PyCharm
|
| 158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 162 |
+
#.idea/
|
LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
README.md
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align ="center">
|
| 2 |
+
<img src="./assets/logo.jpeg" width="20%">
|
| 3 |
+
<h1> ControlAR </h1>
|
| 4 |
+
<h3> Controllable Image Generation with Autoregressive Models </h3>
|
| 5 |
+
|
| 6 |
+
Zongming Li<sup>1,\*</sup>, [Tianheng Cheng](https://scholar.google.com/citations?user=PH8rJHYAAAAJ&hl=zh-CN)<sup>1,\*</sup>, [Shoufa Chen](https://shoufachen.com/)<sup>2</sup>, [Peize Sun](https://peizesun.github.io/)<sup>2</sup>, Haocheng Shen<sup>3</sup>,Longjin Ran<sup>3</sup>, Xiaoxin Chen<sup>3</sup>, [Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu)<sup>1</sup>, [Xinggang Wang](https://xwcv.github.io/)<sup>1,📧</sup>
|
| 7 |
+
|
| 8 |
+
<sup>1</sup> Huazhong University of Science and Technology,
|
| 9 |
+
<sup>2</sup> The University of Hong Kong
|
| 10 |
+
<sup>3</sup> vivo AI Lab
|
| 11 |
+
|
| 12 |
+
<b>ICLR 2025</b>
|
| 13 |
+
|
| 14 |
+
(\* equal contribution, 📧 corresponding author)
|
| 15 |
+
|
| 16 |
+
[](https://arxiv.org/abs/2410.02705)
|
| 17 |
+
[](https://huggingface.co/spaces/wondervictor/ControlAR)
|
| 18 |
+
[](https://huggingface.co/wondervictor/ControlAR)
|
| 19 |
+
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
<div align="center">
|
| 24 |
+
<img src="./assets/vis.png">
|
| 25 |
+
</div>
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## News
|
| 29 |
+
`[2025-01-23]:` Our ControlAR has been accepted by ICLR 2025 🚀 !\
|
| 30 |
+
`[2024-12-12]:` We introduce a control strength factor, employ a larger control encoder(dinov2-base), and optimize text alignment capabilities along with generation diversity. New model weight: depth_base.safetensors and edge_base.safetensors. The edge_base.safetensors can handle three types of edges, including Canny, HED, and Lineart.\
|
| 31 |
+
`[2024-10-31]:` The code and models have been released!\
|
| 32 |
+
`[2024-10-04]:` We have released the [technical report of ControlAR](https://arxiv.org/abs/2410.02705). Code, models, and demos are coming soon!
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
## Highlights
|
| 36 |
+
|
| 37 |
+
* ControlAR explores an effective yet simple *conditional decoding* strategy for adding spatial controls to autoregressive models, e.g., [LlamaGen](https://github.com/FoundationVision/LlamaGen), from a sequence perspective.
|
| 38 |
+
|
| 39 |
+
* ControlAR supports *arbitrary-resolution* image generation with autoregressive models without hand-crafted special tokens or resolution-aware prompts.
|
| 40 |
+
|
| 41 |
+
## TODO
|
| 42 |
+
|
| 43 |
+
- [x] release code & models.
|
| 44 |
+
- [x] release demo code and HuggingFace demo: [HuggingFace Spaces 🤗](https://huggingface.co/spaces/wondervictor/ControlAR)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
## Results
|
| 48 |
+
|
| 49 |
+
We provide both quantitative and qualitative comparisons with diffusion-based methods in the technical report!
|
| 50 |
+
|
| 51 |
+
<div align="center">
|
| 52 |
+
<img src="./assets/comparison.png">
|
| 53 |
+
</div>
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
## Models
|
| 57 |
+
|
| 58 |
+
We released checkpoints of text-to-image ControlAR on different controls and settings, *i.e.* arbitrary-resolution generation.
|
| 59 |
+
|
| 60 |
+
| AR Model | Type | Control encoder | Control | Arbitrary-Resolution | Checkpoint |
|
| 61 |
+
| :--------| :--: | :-------------: | :-----: | :------------------: | :--------: |
|
| 62 |
+
| [LlamaGen-XL](https://github.com/FoundationVision/LlamaGen#-text-conditional-image-generation) | t2i | DINOv2-small | Canny Edge | ✅ | [ckpt](https://huggingface.co/wondervictor/ControlAR/blob/main/canny_MR.safetensors) |
|
| 63 |
+
| [LlamaGen-XL](https://github.com/FoundationVision/LlamaGen#-text-conditional-image-generation) | t2i | DINOv2-small | Depth | ✅ | [ckpt](https://huggingface.co/wondervictor/ControlAR/blob/main/depth_MR.safetensors) |
|
| 64 |
+
| [LlamaGen-XL](https://github.com/FoundationVision/LlamaGen#-text-conditional-image-generation) | t2i | DINOv2-small | HED Edge | ❌ | [ckpt](https://huggingface.co/wondervictor/ControlAR/blob/main/hed.safetensors) |
|
| 65 |
+
| [LlamaGen-XL](https://github.com/FoundationVision/LlamaGen#-text-conditional-image-generation) | t2i | DINOv2-small | Seg. Mask | ❌ | [ckpt](https://huggingface.co/wondervictor/ControlAR/blob/main/seg_cocostuff.safetensors) |
|
| 66 |
+
| [LlamaGen-XL](https://github.com/FoundationVision/LlamaGen#-text-conditional-image-generation) | t2i | DINOv2-base | Edge (Canny, Hed, Lineart) | ❌ | [ckpt](https://huggingface.co/wondervictor/ControlAR/blob/main/edge_base.safetensors) |
|
| 67 |
+
| [LlamaGen-XL](https://github.com/FoundationVision/LlamaGen#-text-conditional-image-generation) | t2i | DINOv2-base | Depth | ❌ | [ckpt](https://huggingface.co/wondervictor/ControlAR/blob/main/depth_base.safetensors) |
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## Getting Started
|
| 72 |
+
|
| 73 |
+
### Installation
|
| 74 |
+
|
| 75 |
+
```bash
|
| 76 |
+
conda create -n ControlAR python=3.10
|
| 77 |
+
git clone https://github.com/hustvl/ControlAR.git
|
| 78 |
+
cd ControlAR
|
| 79 |
+
pip install torch==2.1.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
|
| 80 |
+
pip install -r requirements.txt
|
| 81 |
+
pip3 install -U openmim
|
| 82 |
+
mim install mmengine
|
| 83 |
+
mim install "mmcv==2.1.0"
|
| 84 |
+
pip3 install "mmsegmentation>=1.0.0"
|
| 85 |
+
pip3 install mmdet
|
| 86 |
+
git clone https://github.com/open-mmlab/mmsegmentation.git
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### Pretrained Checkpoints for ControlAR
|
| 90 |
+
|
| 91 |
+
|tokenizer| text encoder |LlamaGen-B|LlamaGen-L|LlamaGen-XL|
|
| 92 |
+
|:-------:|:------------:|:--------:|:--------:|:---------:|
|
| 93 |
+
|[vq_ds16_t2i.pt](https://huggingface.co/peizesun/llamagen_t2i/resolve/main/vq_ds16_t2i.pt)|[flan-t5-xl](https://huggingface.co/google/flan-t5-xl)|[c2i_B_256.pt](https://huggingface.co/FoundationVision/LlamaGen/resolve/main/c2i_B_256.pt)|[c2i_L_256.pt](https://huggingface.co/FoundationVision/LlamaGen/resolve/main/c2i_L_256.pt)|[t2i_XL_512.pt](https://huggingface.co/peizesun/llamagen_t2i/resolve/main/t2i_XL_stage2_512.pt)|
|
| 94 |
+
|
| 95 |
+
We recommend storing them in the following structures:
|
| 96 |
+
```
|
| 97 |
+
|---checkpoints
|
| 98 |
+
|---t2i
|
| 99 |
+
|---canny/canny_MR.safetensors
|
| 100 |
+
|---hed/hed.safetensors
|
| 101 |
+
|---depth/depth_MR.safetensors
|
| 102 |
+
|---seg/seg_cocostuff.safetensors
|
| 103 |
+
|---edge_base.safetensors
|
| 104 |
+
|---depth_base.safetensors
|
| 105 |
+
|---t5-ckpt
|
| 106 |
+
|---flan-t5-xl
|
| 107 |
+
|---config.json
|
| 108 |
+
|---pytorch_model-00001-of-00002.bin
|
| 109 |
+
|---pytorch_model-00002-of-00002.bin
|
| 110 |
+
|---pytorch_model.bin.index.json
|
| 111 |
+
|---tokenizer.json
|
| 112 |
+
|---vq
|
| 113 |
+
|---vq_ds16_c2i.pt
|
| 114 |
+
|---vq_ds16_t2i.pt
|
| 115 |
+
|---llamagen (Only necessary for training)
|
| 116 |
+
|---c2i_B_256.pt
|
| 117 |
+
|---c2i_L_256.pt
|
| 118 |
+
|---t2i_XL_stage2_512.pt
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
### Demo
|
| 122 |
+
|
| 123 |
+
Coming soon...
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
### Sample & Generation
|
| 127 |
+
|
| 128 |
+
#### 1. Class-to-image genetation
|
| 129 |
+
|
| 130 |
+
```bash
|
| 131 |
+
python autoregressive/sample/sample_c2i.py \
|
| 132 |
+
--vq-ckpt checkpoints/vq/vq_ds16_c2i.pt \
|
| 133 |
+
--gpt-ckpt checkpoints/c2i/canny/LlamaGen-L.pt \
|
| 134 |
+
--gpt-model GPT-L --seed 0 --condition-type canny
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
#### 2. Text-to-image generation
|
| 138 |
+
|
| 139 |
+
*Generate an image using HED edge and text-to-image ControlAR:*
|
| 140 |
+
|
| 141 |
+
```bash
|
| 142 |
+
python autoregressive/sample/sample_t2i.py \
|
| 143 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 144 |
+
--gpt-ckpt checkpoints/t2i/hed/hed.safetensors \
|
| 145 |
+
--gpt-model GPT-XL --image-size 512 \
|
| 146 |
+
--condition-type hed --seed 0 --condition-path condition/example/t2i/multigen/eye.png
|
| 147 |
+
```
|
| 148 |
+
*Generate an image using segmentation mask and text-to-image ControlAR:*
|
| 149 |
+
|
| 150 |
+
```bash
|
| 151 |
+
python autoregressive/sample/sample_t2i.py \
|
| 152 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 153 |
+
--gpt-ckpt checkpoints/t2i/seg/seg_cocostuff.safetensors \
|
| 154 |
+
--gpt-model GPT-XL --image-size 512 \
|
| 155 |
+
--condition-type seg --seed 0 --condition-path condition/example/t2i/cocostuff/doll.png \
|
| 156 |
+
--prompt 'A stuffed animal wearing a mask and a leash, sitting on a pink blanket'
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
#### 3. Text-to-image generation with adjustable control strength
|
| 160 |
+
*Generate an image using depth map and text-to-image ControlAR:*
|
| 161 |
+
|
| 162 |
+
```bash
|
| 163 |
+
python autoregressive/sample/sample_t2i.py \
|
| 164 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 165 |
+
--gpt-ckpt checkpoints/t2i/depth_base.safetensors \
|
| 166 |
+
--gpt-model GPT-XL --image-size 512 \
|
| 167 |
+
--condition-type seg --seed 0 --condition-path condition/example/t2i/multigen/bird.jpg \
|
| 168 |
+
--prompt 'A bird made of blue crystal' \
|
| 169 |
+
--adapter-size base \
|
| 170 |
+
--control-strength 0.6
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
*Generate an image using lineart edge and text-to-image ControlAR:*
|
| 174 |
+
|
| 175 |
+
```bash
|
| 176 |
+
python autoregressive/sample/sample_t2i.py \
|
| 177 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 178 |
+
--gpt-ckpt checkpoints/t2i/edge_base.safetensors \
|
| 179 |
+
--gpt-model GPT-XL --image-size 512 \
|
| 180 |
+
--condition-type lineart --seed 0 --condition-path condition/example/t2i/multigen/girl.jpg \
|
| 181 |
+
--prompt 'A girl with blue hair' \
|
| 182 |
+
--adapter-size base \
|
| 183 |
+
--control-strength 0.6
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
(you can change lineart to canny_base or hed)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
#### 4. Arbitrary-resolution generation
|
| 190 |
+
|
| 191 |
+
```bash
|
| 192 |
+
python3 autoregressive/sample/sample_t2i_MR.py --vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 193 |
+
--gpt-ckpt checkpoints/t2i/depth_MR.safetensors --gpt-model GPT-XL --image-size 768 \
|
| 194 |
+
--condition-type depth --condition-path condition/example/t2i/multi_resolution/bird.jpg \
|
| 195 |
+
--prompt 'colorful bird' --seed 0
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
```bash
|
| 199 |
+
python3 autoregressive/sample/sample_t2i_MR.py --vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 200 |
+
--gpt-ckpt checkpoints/t2i/canny_MR.safetensors --gpt-model GPT-XL --image-size 768 \
|
| 201 |
+
--condition-type canny --condition-path condition/example/t2i/multi_resolution/bird.jpg \
|
| 202 |
+
--prompt 'colorful bird' --seed 0
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
### Preparing Datasets
|
| 206 |
+
We provide the dataset datails for evaluation and training. If you don't want to train ControlAR, just download the validation splits.
|
| 207 |
+
|
| 208 |
+
#### 1. Class-to-image
|
| 209 |
+
* Download [ImageNet](https://image-net.org/) and save it to `data/imagenet/data`.
|
| 210 |
+
|
| 211 |
+
#### 2. Text-to-image
|
| 212 |
+
* Download [ADE20K with caption](https://huggingface.co/datasets/limingcv/Captioned_ADE20K)(~7GB) and save the `.parquet` files to `data/Captioned_ADE20K/data`.
|
| 213 |
+
* Download [COCOStuff with caption](https://huggingface.co/datasets/limingcv/Captioned_COCOStuff)( ~62GB) and save the .parquet files to `data/Captioned_COCOStuff/data`.
|
| 214 |
+
* Download [MultiGen-20M](https://huggingface.co/datasets/limingcv/MultiGen-20M_depth)( ~1.22TB) and save the .parquet files to `data/MultiGen20M/data`.
|
| 215 |
+
|
| 216 |
+
#### 3. Preprocessing datasets
|
| 217 |
+
To save training time, we adopt the tokenizer to pre-process the images with the text prompts.
|
| 218 |
+
|
| 219 |
+
* ImageNet
|
| 220 |
+
```bash
|
| 221 |
+
bash scripts/autoregressive/extract_file_imagenet.sh \
|
| 222 |
+
--vq-ckpt checkpoints/vq/vq_ds16_c2i.pt \
|
| 223 |
+
--data-path data/imagenet/data/val \
|
| 224 |
+
--code-path data/imagenet/val/imagenet_code_c2i_flip_ten_crop \
|
| 225 |
+
--ten-crop --crop-range 1.1 --image-size 256
|
| 226 |
+
```
|
| 227 |
+
* ADE20k
|
| 228 |
+
```sh
|
| 229 |
+
bash scripts/autoregressive/extract_file_ade.sh \
|
| 230 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 231 |
+
--data-path data/Captioned_ADE20K/data --code-path data/Captioned_ADE20K/val \
|
| 232 |
+
--ten-crop --crop-range 1.1 --image-size 512 --split validation
|
| 233 |
+
```
|
| 234 |
+
* COCOStuff
|
| 235 |
+
```bash
|
| 236 |
+
bash scripts/autoregressive/extract_file_cocostuff.sh \
|
| 237 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 238 |
+
--data-path data/Captioned_COCOStuff/data --code-path data/Captioned_COCOStuff/val \
|
| 239 |
+
--ten-crop --crop-range 1.1 --image-size 512 --split validation
|
| 240 |
+
```
|
| 241 |
+
* MultiGen
|
| 242 |
+
```bash
|
| 243 |
+
bash scripts/autoregressive/extract_file_multigen.sh \
|
| 244 |
+
--vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 245 |
+
--data-path data/MultiGen20M/data --code-path data/MultiGen20M/val \
|
| 246 |
+
--ten-crop --crop-range 1.1 --image-size 512 --split validation
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
### Testing and Evaluation
|
| 250 |
+
|
| 251 |
+
#### 1. Class-to-image generation on ImageNet
|
| 252 |
+
|
| 253 |
+
```bash
|
| 254 |
+
bash scripts/autoregressive/test_c2i.sh \
|
| 255 |
+
--vq-ckpt ./checkpoints/vq/vq_ds16_c2i.pt \
|
| 256 |
+
--gpt-ckpt ./checkpoints/c2i/canny/LlamaGen-L.pt \
|
| 257 |
+
--code-path /path/imagenet/val/imagenet_code_c2i_flip_ten_crop \
|
| 258 |
+
--gpt-model GPT-L --condition-type canny --get-condition-img True \
|
| 259 |
+
--sample-dir ./sample --save-image True
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
```bash
|
| 263 |
+
python create_npz.py --generated-images ./sample/imagenet/canny
|
| 264 |
+
```
|
| 265 |
+
Then download imagenet [validation data](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/imagenet/256/VIRTUAL_imagenet256_labeled.npz) which contains 10000 images, or you can use the whole validation data as reference data by running [val.sh](scripts/tokenizer/val.sh).
|
| 266 |
+
|
| 267 |
+
Calculate the FID score:
|
| 268 |
+
```bash
|
| 269 |
+
python evaluations/c2i/evaluator.py /path/imagenet/val/FID/VIRTUAL_imagenet256_labeled.npz \
|
| 270 |
+
sample/imagenet/canny.npz
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
#### 2. Text-to-image generation on ADE20k
|
| 274 |
+
|
| 275 |
+
Download Mask2Former([weight](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth)) and save it to `evaluations/`.
|
| 276 |
+
|
| 277 |
+
Use this command to get 2000 images based on the segmentation mask:
|
| 278 |
+
|
| 279 |
+
```bash
|
| 280 |
+
bash scripts/autoregressive/test_t2i.sh --vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 281 |
+
--gpt-ckpt checkpoints/t2i/seg/seg_ade20k.pt \
|
| 282 |
+
--code-path data/Captioned_ADE20K/val --gpt-model GPT-XL --image-size 512 \
|
| 283 |
+
--sample-dir sample/ade20k --condition-type seg --seed 0
|
| 284 |
+
```
|
| 285 |
+
Calculate mIoU of the segmentation masks from the generated images:
|
| 286 |
+
```sh
|
| 287 |
+
python evaluations/ade20k_mIoU.py
|
| 288 |
+
```
|
| 289 |
+
|
| 290 |
+
#### 3. Text-to-image generation on COCOStuff
|
| 291 |
+
|
| 292 |
+
Download DeepLabV3([weight](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth)) and save it to `evaluations/`.
|
| 293 |
+
|
| 294 |
+
Generate images using segmentation masks as condition controls:
|
| 295 |
+
```bash
|
| 296 |
+
bash scripts/autoregressive/test_t2i.sh --vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 297 |
+
--gpt-ckpt checkpoints/t2i/seg/seg_cocostuff.pt \
|
| 298 |
+
--code-path data/Captioned_COCOStuff/val --gpt-model GPT-XL --image-size 512 \
|
| 299 |
+
--sample-dir sample/cocostuff --condition-type seg --seed 0
|
| 300 |
+
```
|
| 301 |
+
Calculate mIoU of the segmentation masks from the generated images:
|
| 302 |
+
```bash
|
| 303 |
+
python evaluations/cocostuff_mIoU.py
|
| 304 |
+
```
|
| 305 |
+
|
| 306 |
+
#### 4. Text-to-image generation on MultiGen-20M
|
| 307 |
+
|
| 308 |
+
We adopt **generation with HED edges** as the example:
|
| 309 |
+
|
| 310 |
+
Generate 5000 images based on the HED edges generated from validation images
|
| 311 |
+
```sh
|
| 312 |
+
bash scripts/autoregressive/test_t2i.sh --vq-ckpt checkpoints/vq/vq_ds16_t2i.pt \
|
| 313 |
+
--gpt-ckpt checkpoints/t2i/hed/hed.safetensors --code-path data/MultiGen20M/val \
|
| 314 |
+
--gpt-model GPT-XL --image-size 512 --sample-dir sample/multigen/hed \
|
| 315 |
+
--condition-type hed --seed 0
|
| 316 |
+
```
|
| 317 |
+
|
| 318 |
+
Evaluate the conditional consistency (SSIM):
|
| 319 |
+
```bash
|
| 320 |
+
python evaluations/hed_ssim.py
|
| 321 |
+
```
|
| 322 |
+
Calculate the FID score:
|
| 323 |
+
```bash
|
| 324 |
+
python evaluations/clean_fid.py --val-images data/MultiGen20M/val/image --generated-images sample/multigen/hed/visualization
|
| 325 |
+
```
|
| 326 |
+
|
| 327 |
+
### Training ControlAR
|
| 328 |
+
|
| 329 |
+
#### 1. Class-to-image (Canny)
|
| 330 |
+
|
| 331 |
+
```bash
|
| 332 |
+
bash scripts/autoregressive/train_c2i_canny.sh --cloud-save-path output \
|
| 333 |
+
--code-path data/imagenet/train/imagenet_code_c2i_flip_ten_crop \
|
| 334 |
+
--image-size 256 --gpt-model GPT-B --gpt-ckpt checkpoints/llamagen/c2i_B_256.pt
|
| 335 |
+
```
|
| 336 |
+
|
| 337 |
+
#### 2. Text-to-image (Canny)
|
| 338 |
+
|
| 339 |
+
```bash
|
| 340 |
+
bash scripts/autoregressive/train_t2i_canny.sh
|
| 341 |
+
```
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
## Acknowledgments
|
| 345 |
+
|
| 346 |
+
The development of ControlAR is based on [LlamaGen](https://github.com/FoundationVision/LlamaGen), [ControlNet](https://github.com/lllyasviel/ControlNet), [ControlNet++](https://github.com/liming-ai/ControlNet_Plus_Plus), and [AiM](https://github.com/hp-l33/AiM), and we sincerely thank the contributors for thoese great works!
|
| 347 |
+
|
| 348 |
+
## Citation
|
| 349 |
+
If you find ControlAR is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.
|
| 350 |
+
|
| 351 |
+
```bibtex
|
| 352 |
+
@article{li2024controlar,
|
| 353 |
+
title={ControlAR: Controllable Image Generation with Autoregressive Models},
|
| 354 |
+
author={Zongming Li, Tianheng Cheng, Shoufa Chen, Peize Sun, Haocheng Shen, Longjin Ran, Xiaoxin Chen, Wenyu Liu, Xinggang Wang},
|
| 355 |
+
year={2024},
|
| 356 |
+
eprint={2410.02705},
|
| 357 |
+
archivePrefix={arXiv},
|
| 358 |
+
primaryClass={cs.CV},
|
| 359 |
+
url={https://arxiv.org/abs/2410.02705},
|
| 360 |
+
}
|
| 361 |
+
```
|
| 362 |
+
|
assets/comparison.png
ADDED
|
Git LFS Details
|
assets/logo.jpeg
ADDED
|
Git LFS Details
|
assets/vis.png
ADDED
|
Git LFS Details
|
autoregressive/models/README.md
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Download the vit weight first
|
| 2 |
+
|
| 3 |
+
ViT-small: https://huggingface.co/WinKawaks/vit-small-patch16-224 \
|
| 4 |
+
Dinov2-small: https://huggingface.co/facebook/dinov2-small \
|
| 5 |
+
Dinov2-base: https://huggingface.co/facebook/dinov2-base
|
| 6 |
+
|
| 7 |
+
Put them here
|
autoregressive/models/dinov2_adapter.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Dinov2_Adapter(nn.Module):
|
| 9 |
+
def __init__(self, input_dim=1, output_dim=768, attention=False, pool=False, nheads=8, dropout=0.1, adapter_size='small', condition_type='canny'):
|
| 10 |
+
super(Dinov2_Adapter, self).__init__()
|
| 11 |
+
print(f"Choose adapter size: {adapter_size}")
|
| 12 |
+
print(f"condition type: {condition_type}")
|
| 13 |
+
self.model = AutoModel.from_pretrained(f'autoregressive/models/dinov2-{adapter_size}')
|
| 14 |
+
self.condition_type = condition_type
|
| 15 |
+
|
| 16 |
+
def to_patch14(self, input):
|
| 17 |
+
H, W = input.shape[2:]
|
| 18 |
+
new_H = (H // 16) * 14
|
| 19 |
+
new_W = (W // 16) * 14
|
| 20 |
+
if self.condition_type in ['canny', 'seg']:
|
| 21 |
+
output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='nearest')#, align_corners=True) canny, seg
|
| 22 |
+
else:
|
| 23 |
+
output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='bicubic', align_corners=True) # depth, lineart, hed
|
| 24 |
+
return output
|
| 25 |
+
|
| 26 |
+
def forward(self, x):
|
| 27 |
+
x = self.to_patch14(x)
|
| 28 |
+
x = self.model(x)
|
| 29 |
+
return x.last_hidden_state[:, 1:]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
if __name__ == '__main__':
|
| 33 |
+
model = Dinov2_Adapter().cuda()
|
| 34 |
+
inputs = torch.randn(4,3,512,512).cuda()
|
| 35 |
+
outputs = model(inputs)
|
| 36 |
+
print(outputs.shape)
|
autoregressive/models/generate.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
|
| 3 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
import torch._dynamo.config
|
| 8 |
+
import torch._inductor.config
|
| 9 |
+
import copy
|
| 10 |
+
import time
|
| 11 |
+
# torch._inductor.config.coordinate_descent_tuning = True
|
| 12 |
+
# torch._inductor.config.triton.unique_kernel_names = True
|
| 13 |
+
# torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
|
| 17 |
+
def top_k_top_p_filtering(
|
| 18 |
+
logits,
|
| 19 |
+
top_k: int = 0,
|
| 20 |
+
top_p: float = 1.0,
|
| 21 |
+
filter_value: float = -float("Inf"),
|
| 22 |
+
min_tokens_to_keep: int = 1,
|
| 23 |
+
):
|
| 24 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
| 25 |
+
Args:
|
| 26 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
| 27 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
| 28 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
| 29 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
| 30 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
| 31 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
| 32 |
+
"""
|
| 33 |
+
if top_k > 0:
|
| 34 |
+
# import pdb;pdb.set_trace()
|
| 35 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
| 36 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
| 37 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 38 |
+
logits[indices_to_remove] = filter_value
|
| 39 |
+
|
| 40 |
+
if top_p < 1.0:
|
| 41 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 42 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 43 |
+
|
| 44 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
| 45 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 46 |
+
if min_tokens_to_keep > 1:
|
| 47 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
| 48 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
| 49 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
| 50 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 51 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 52 |
+
|
| 53 |
+
# scatter sorted tensors to original indexing
|
| 54 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 55 |
+
logits[indices_to_remove] = filter_value
|
| 56 |
+
return logits
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def sample(logits, temperature: float=1.0, top_k: int=2000, top_p: float=1.0, sample_logits=True):
|
| 60 |
+
logits = logits[:, -1, :] / max(temperature, 1e-5)
|
| 61 |
+
if top_k > 0 or top_p < 1.0:
|
| 62 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 63 |
+
probs = F.softmax(logits, dim=-1)
|
| 64 |
+
# values, indices = torch.max(probs, dim=1, keepdim=True)
|
| 65 |
+
# mask = (probs == values).float()
|
| 66 |
+
# probs = probs * (1 - mask)
|
| 67 |
+
# values, indices = torch.max(probs, dim=1, keepdim=True)
|
| 68 |
+
# mask = (probs == values).float()
|
| 69 |
+
# probs = probs * (1 - mask)
|
| 70 |
+
if sample_logits:
|
| 71 |
+
idx = torch.multinomial(probs, num_samples=1)
|
| 72 |
+
else:
|
| 73 |
+
_, idx = torch.topk(probs, k=1, dim=-1)
|
| 74 |
+
return idx, probs
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def logits_to_probs(logits, temperature: float = 1.0, top_p: float=1.0, top_k: int = None, **kwargs):
|
| 78 |
+
logits = logits / max(temperature, 1e-5)
|
| 79 |
+
if top_k > 0 or top_p < 1.0:
|
| 80 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 81 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 82 |
+
return probs
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def prefill(model, cond_idx: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, condition:torch.Tensor, control_strength: float=1, **sampling_kwargs):
|
| 86 |
+
if cfg_scale > 1.0:
|
| 87 |
+
logits, _ = model(None, cond_idx, input_pos, condition=condition, control_strength=control_strength)
|
| 88 |
+
logits_combined = logits
|
| 89 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 90 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
| 91 |
+
else:
|
| 92 |
+
logits, _ = model(None, cond_idx, input_pos, condition=condition)
|
| 93 |
+
|
| 94 |
+
return sample(logits, **sampling_kwargs)[0]
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def decode_one_token(model, x: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, cfg_flag: bool, condition: torch.Tensor, **sampling_kwargs):
|
| 98 |
+
assert input_pos.shape[-1] == 1
|
| 99 |
+
if cfg_scale > 1.0:
|
| 100 |
+
x_combined = torch.cat([x, x])
|
| 101 |
+
logits, _ = model(x_combined, cond_idx=None, input_pos=input_pos, condition=condition)
|
| 102 |
+
logits_combined = logits
|
| 103 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 104 |
+
if cfg_flag:
|
| 105 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
| 106 |
+
else:
|
| 107 |
+
logits = cond_logits
|
| 108 |
+
else:
|
| 109 |
+
logits, _ = model(x, cond_idx=None, input_pos=input_pos, condition=None)
|
| 110 |
+
return sample(logits, **sampling_kwargs)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def decode_n_tokens(
|
| 114 |
+
model, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int,
|
| 115 |
+
cfg_scale: float, cfg_interval: int, condition: torch.Tensor,
|
| 116 |
+
**sampling_kwargs):
|
| 117 |
+
new_tokens, new_probs = [], []
|
| 118 |
+
cfg_flag = True
|
| 119 |
+
for i in range(num_new_tokens):
|
| 120 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
|
| 121 |
+
if cfg_interval > -1 and i > cfg_interval:
|
| 122 |
+
cfg_flag = False
|
| 123 |
+
next_token, next_prob = decode_one_token(
|
| 124 |
+
model, cur_token, input_pos, cfg_scale, cfg_flag, condition=condition, **sampling_kwargs
|
| 125 |
+
)
|
| 126 |
+
input_pos += 1
|
| 127 |
+
new_tokens.append(next_token.clone())
|
| 128 |
+
new_probs.append(next_prob.clone())
|
| 129 |
+
cur_token = next_token.view(-1, 1)
|
| 130 |
+
|
| 131 |
+
return new_tokens, new_probs
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
@torch.no_grad()
|
| 135 |
+
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, control_strength=1, **sampling_kwargs):
|
| 136 |
+
if condition is not None:
|
| 137 |
+
condition = model.adapter(condition)
|
| 138 |
+
condition = model.adapter_mlp(condition)
|
| 139 |
+
if model.model_type == 'c2i':
|
| 140 |
+
if cfg_scale > 1.0:
|
| 141 |
+
cond_null = torch.ones_like(cond) * model.num_classes
|
| 142 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 143 |
+
if condition is not None:
|
| 144 |
+
condition_null = torch.zeros_like(condition)
|
| 145 |
+
condition_combined = torch.cat((condition, condition_null), dim=0)
|
| 146 |
+
else:
|
| 147 |
+
condition_combined = None
|
| 148 |
+
else:
|
| 149 |
+
cond_combined = cond
|
| 150 |
+
if condition is not None:
|
| 151 |
+
condition_combined = condition
|
| 152 |
+
else:
|
| 153 |
+
condition_combined = None
|
| 154 |
+
T = 1+condition_token_nums
|
| 155 |
+
elif model.model_type == 't2i':
|
| 156 |
+
if cfg_scale > 1.0:
|
| 157 |
+
cond_null = torch.zeros_like(cond) + model.cls_embedding.uncond_embedding
|
| 158 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 159 |
+
|
| 160 |
+
if condition is not None:
|
| 161 |
+
condition_null = torch.zeros_like(condition)
|
| 162 |
+
condition_combined = torch.cat((condition, condition_null), dim=0)
|
| 163 |
+
else:
|
| 164 |
+
condition_combined = None
|
| 165 |
+
else:
|
| 166 |
+
cond_combined = cond
|
| 167 |
+
if condition is not None:
|
| 168 |
+
condition_combined = condition
|
| 169 |
+
else:
|
| 170 |
+
condition_combined = None
|
| 171 |
+
T = cond.shape[1]
|
| 172 |
+
else:
|
| 173 |
+
raise Exception("please check model type")
|
| 174 |
+
|
| 175 |
+
T_new = T + max_new_tokens
|
| 176 |
+
max_seq_length = T_new
|
| 177 |
+
max_batch_size = cond.shape[0]
|
| 178 |
+
|
| 179 |
+
device = cond.device
|
| 180 |
+
with torch.device(device):
|
| 181 |
+
max_batch_size_cfg = max_batch_size * 2 if cfg_scale > 1.0 else max_batch_size
|
| 182 |
+
model.setup_caches(max_batch_size=max_batch_size_cfg, max_seq_length=max_seq_length, dtype=model.tok_embeddings.weight.dtype)
|
| 183 |
+
|
| 184 |
+
if emb_masks is not None:
|
| 185 |
+
assert emb_masks.shape[0] == max_batch_size
|
| 186 |
+
assert emb_masks.shape[-1] == T
|
| 187 |
+
if cfg_scale > 1.0:
|
| 188 |
+
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * torch.cat([emb_masks, emb_masks]).unsqueeze(1)
|
| 189 |
+
else:
|
| 190 |
+
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * emb_masks.unsqueeze(1)
|
| 191 |
+
|
| 192 |
+
eye_matrix = torch.eye(model.causal_mask.size(1), model.causal_mask.size(2), device=device)
|
| 193 |
+
model.causal_mask[:] = model.causal_mask * (1 - eye_matrix) + eye_matrix
|
| 194 |
+
|
| 195 |
+
# create an empty tensor of the expected final shape and fill in the current tokens
|
| 196 |
+
seq = torch.empty((max_batch_size, T_new), dtype=torch.int, device=device)
|
| 197 |
+
input_pos = torch.arange(0, T, device=device)
|
| 198 |
+
next_token = prefill(model, cond_combined, input_pos, cfg_scale, condition_combined, control_strength, **sampling_kwargs)
|
| 199 |
+
seq[:, T:T+1] = next_token
|
| 200 |
+
|
| 201 |
+
input_pos = torch.tensor([T], device=device, dtype=torch.int)
|
| 202 |
+
generated_tokens, _ = decode_n_tokens(model, next_token, input_pos, max_new_tokens-1, cfg_scale, cfg_interval, condition=condition_combined, **sampling_kwargs)
|
| 203 |
+
seq[:, T+1:] = torch.cat(generated_tokens, dim=1)
|
| 204 |
+
return seq[:, T:]
|
autoregressive/models/gpt.py
ADDED
|
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py
|
| 3 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 4 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 5 |
+
# llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py
|
| 6 |
+
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 7 |
+
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional, List
|
| 10 |
+
|
| 11 |
+
import io
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from torch.nn import functional as F
|
| 15 |
+
from utils.drop_path import DropPath
|
| 16 |
+
from autoregressive.models.dinov2_adapter import Dinov2_Adapter
|
| 17 |
+
from autoregressive.models.vit_adapter import ViT_Adapter
|
| 18 |
+
|
| 19 |
+
def get_causal_mask(seq_length):
|
| 20 |
+
mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool)
|
| 21 |
+
mask = mask.masked_fill(mask, float('-inf'))
|
| 22 |
+
mask = mask.masked_fill(~mask, float(0.0))
|
| 23 |
+
return mask
|
| 24 |
+
|
| 25 |
+
def find_multiple(n: int, k: int):
|
| 26 |
+
if n % k == 0:
|
| 27 |
+
return n
|
| 28 |
+
return n + k - (n % k)
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class ModelArgs:
|
| 32 |
+
dim: int = 4096
|
| 33 |
+
n_layer: int = 32
|
| 34 |
+
n_head: int = 32
|
| 35 |
+
n_kv_head: Optional[int] = None
|
| 36 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
| 37 |
+
ffn_dim_multiplier: Optional[float] = None
|
| 38 |
+
rope_base: float = 10000
|
| 39 |
+
norm_eps: float = 1e-5
|
| 40 |
+
initializer_range: float = 0.02
|
| 41 |
+
|
| 42 |
+
token_dropout_p: float = 0.1
|
| 43 |
+
attn_dropout_p: float = 0.0
|
| 44 |
+
resid_dropout_p: float = 0.1
|
| 45 |
+
ffn_dropout_p: float = 0.1
|
| 46 |
+
drop_path_rate: float = 0.0
|
| 47 |
+
|
| 48 |
+
num_classes: int = 1000
|
| 49 |
+
caption_dim: int = 2048
|
| 50 |
+
class_dropout_prob: float = 0.1
|
| 51 |
+
model_type: str = 'c2i'
|
| 52 |
+
|
| 53 |
+
vocab_size: int = 16384
|
| 54 |
+
cls_token_num: int = 1
|
| 55 |
+
block_size: int = 256
|
| 56 |
+
max_batch_size: int = 32
|
| 57 |
+
max_seq_len: int = 2048
|
| 58 |
+
|
| 59 |
+
condition_token_num: int = 256
|
| 60 |
+
image_size: int = 256
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
#################################################################################
|
| 64 |
+
# Embedding Layers for Class Labels #
|
| 65 |
+
#################################################################################
|
| 66 |
+
class LabelEmbedder(nn.Module):
|
| 67 |
+
"""
|
| 68 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
| 69 |
+
"""
|
| 70 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 71 |
+
super().__init__()
|
| 72 |
+
use_cfg_embedding = dropout_prob > 0
|
| 73 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 74 |
+
self.num_classes = num_classes
|
| 75 |
+
self.dropout_prob = dropout_prob
|
| 76 |
+
|
| 77 |
+
def token_drop(self, labels, force_drop_ids=None):
|
| 78 |
+
"""
|
| 79 |
+
Drops labels to enable classifier-free guidance.
|
| 80 |
+
"""
|
| 81 |
+
if force_drop_ids is None:
|
| 82 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 83 |
+
else:
|
| 84 |
+
drop_ids = force_drop_ids == 1
|
| 85 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
| 86 |
+
return labels, drop_ids
|
| 87 |
+
|
| 88 |
+
def forward(self, labels, train, force_drop_ids=None):
|
| 89 |
+
use_dropout = self.dropout_prob > 0
|
| 90 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 91 |
+
labels,drop_ids = self.token_drop(labels, force_drop_ids)
|
| 92 |
+
embeddings = self.embedding_table(labels).unsqueeze(1)
|
| 93 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 94 |
+
return embeddings,drop_ids
|
| 95 |
+
else:
|
| 96 |
+
return embeddings
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class ConditionEmbedder(nn.Module):
|
| 100 |
+
"""
|
| 101 |
+
Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance.
|
| 102 |
+
"""
|
| 103 |
+
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size)
|
| 106 |
+
self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5)
|
| 107 |
+
self.uncond_prob = uncond_prob
|
| 108 |
+
|
| 109 |
+
def token_drop(self, caption, force_drop_ids=None, drop_ids=None):
|
| 110 |
+
"""
|
| 111 |
+
Drops labels to enable classifier-free guidance.
|
| 112 |
+
"""
|
| 113 |
+
if force_drop_ids is None:
|
| 114 |
+
if drop_ids is None:
|
| 115 |
+
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
|
| 116 |
+
else:
|
| 117 |
+
drop_ids = force_drop_ids == 1
|
| 118 |
+
uncond_embedding = torch.zeros_like(caption[0])
|
| 119 |
+
caption = torch.where(drop_ids[:, None, None], uncond_embedding, caption)
|
| 120 |
+
return caption
|
| 121 |
+
|
| 122 |
+
def forward(self, caption, train, force_drop_ids=None, drop_ids=None):
|
| 123 |
+
use_dropout = self.uncond_prob > 0
|
| 124 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 125 |
+
caption = self.token_drop(caption, force_drop_ids, drop_ids)
|
| 126 |
+
embeddings = self.cap_proj(caption)
|
| 127 |
+
return embeddings
|
| 128 |
+
|
| 129 |
+
#################################################################################
|
| 130 |
+
# Embedding Layers for Text Feature #
|
| 131 |
+
#################################################################################
|
| 132 |
+
class CaptionEmbedder(nn.Module):
|
| 133 |
+
"""
|
| 134 |
+
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance.
|
| 135 |
+
"""
|
| 136 |
+
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120):
|
| 137 |
+
super().__init__()
|
| 138 |
+
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size)
|
| 139 |
+
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
|
| 140 |
+
self.uncond_prob = uncond_prob
|
| 141 |
+
|
| 142 |
+
def token_drop(self, caption, force_drop_ids=None):
|
| 143 |
+
"""
|
| 144 |
+
Drops labels to enable classifier-free guidance.
|
| 145 |
+
"""
|
| 146 |
+
if force_drop_ids is None:
|
| 147 |
+
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
|
| 148 |
+
else:
|
| 149 |
+
drop_ids = force_drop_ids == 1
|
| 150 |
+
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption)
|
| 151 |
+
return caption
|
| 152 |
+
|
| 153 |
+
def forward(self, caption, train, force_drop_ids=None):
|
| 154 |
+
use_dropout = self.uncond_prob > 0
|
| 155 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 156 |
+
caption = self.token_drop(caption, force_drop_ids)
|
| 157 |
+
embeddings = self.cap_proj(caption)
|
| 158 |
+
return embeddings
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class MLP(nn.Module):
|
| 162 |
+
def __init__(self, in_features, hidden_features, out_features):
|
| 163 |
+
super().__init__()
|
| 164 |
+
out_features = out_features or in_features
|
| 165 |
+
hidden_features = hidden_features or in_features
|
| 166 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
|
| 167 |
+
self.act = nn.GELU(approximate='tanh')
|
| 168 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 169 |
+
|
| 170 |
+
nn.init.zeros_(self.fc1.weight)
|
| 171 |
+
nn.init.zeros_(self.fc2.weight)
|
| 172 |
+
|
| 173 |
+
def forward(self, x):
|
| 174 |
+
x = self.fc1(x)
|
| 175 |
+
x = self.act(x)
|
| 176 |
+
x = self.fc2(x)
|
| 177 |
+
return x
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
#################################################################################
|
| 181 |
+
# GPT Model #
|
| 182 |
+
#################################################################################
|
| 183 |
+
class RMSNorm(torch.nn.Module):
|
| 184 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
| 185 |
+
super().__init__()
|
| 186 |
+
self.eps = eps
|
| 187 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 188 |
+
|
| 189 |
+
def _norm(self, x):
|
| 190 |
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 191 |
+
|
| 192 |
+
def forward(self, x):
|
| 193 |
+
output = self._norm(x.float()).type_as(x)
|
| 194 |
+
return output * self.weight
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class FeedForward(nn.Module):
|
| 198 |
+
def __init__(self, config: ModelArgs):
|
| 199 |
+
super().__init__()
|
| 200 |
+
hidden_dim = 4 * config.dim
|
| 201 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 202 |
+
# custom dim factor multiplier
|
| 203 |
+
if config.ffn_dim_multiplier is not None:
|
| 204 |
+
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
|
| 205 |
+
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
|
| 206 |
+
|
| 207 |
+
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 208 |
+
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 209 |
+
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
|
| 210 |
+
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
|
| 211 |
+
|
| 212 |
+
def forward(self, x):
|
| 213 |
+
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class KVCache(nn.Module):
|
| 217 |
+
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
|
| 218 |
+
super().__init__()
|
| 219 |
+
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
|
| 220 |
+
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 221 |
+
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 222 |
+
|
| 223 |
+
def update(self, input_pos, k_val, v_val):
|
| 224 |
+
# input_pos: [S], k_val: [B, H, S, D]
|
| 225 |
+
assert input_pos.shape[0] == k_val.shape[2]
|
| 226 |
+
k_out = self.k_cache
|
| 227 |
+
v_out = self.v_cache
|
| 228 |
+
k_out[:, :, input_pos] = k_val
|
| 229 |
+
v_out[:, :, input_pos] = v_val
|
| 230 |
+
|
| 231 |
+
return k_out, v_out
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class Attention(nn.Module):
|
| 235 |
+
def __init__(self, config: ModelArgs):
|
| 236 |
+
super().__init__()
|
| 237 |
+
assert config.dim % config.n_head == 0
|
| 238 |
+
self.dim = config.dim
|
| 239 |
+
self.head_dim = config.dim // config.n_head
|
| 240 |
+
self.n_head = config.n_head
|
| 241 |
+
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
|
| 242 |
+
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
|
| 243 |
+
|
| 244 |
+
# key, query, value projections for all heads, but in a batch
|
| 245 |
+
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
|
| 246 |
+
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
| 247 |
+
self.kv_cache = None
|
| 248 |
+
|
| 249 |
+
# regularization
|
| 250 |
+
self.attn_dropout_p = config.attn_dropout_p
|
| 251 |
+
self.resid_dropout = nn.Dropout(config.resid_dropout_p)
|
| 252 |
+
|
| 253 |
+
def forward(
|
| 254 |
+
self, x: torch.Tensor, freqs_cis: torch.Tensor = None,
|
| 255 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 256 |
+
mask: Optional[torch.Tensor] = None
|
| 257 |
+
):
|
| 258 |
+
bsz, seqlen, _ = x.shape
|
| 259 |
+
kv_size = self.n_kv_head * self.head_dim
|
| 260 |
+
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
| 261 |
+
|
| 262 |
+
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 263 |
+
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 264 |
+
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 265 |
+
|
| 266 |
+
xq = apply_rotary_emb(xq, freqs_cis)
|
| 267 |
+
xk = apply_rotary_emb(xk, freqs_cis)
|
| 268 |
+
|
| 269 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 270 |
+
|
| 271 |
+
if self.kv_cache is not None:
|
| 272 |
+
keys, values = self.kv_cache.update(input_pos, xk, xv)
|
| 273 |
+
else:
|
| 274 |
+
keys, values = xk, xv
|
| 275 |
+
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 276 |
+
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 277 |
+
|
| 278 |
+
output = F.scaled_dot_product_attention(
|
| 279 |
+
xq, keys, values,
|
| 280 |
+
attn_mask=mask,
|
| 281 |
+
is_causal=True if mask is None else False, # is_causal=False is for KV cache
|
| 282 |
+
dropout_p=self.attn_dropout_p if self.training else 0)
|
| 283 |
+
|
| 284 |
+
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
| 285 |
+
|
| 286 |
+
output = self.resid_dropout(self.wo(output))
|
| 287 |
+
return output
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class TransformerBlock(nn.Module):
|
| 291 |
+
def __init__(self, config: ModelArgs, drop_path: float):
|
| 292 |
+
super().__init__()
|
| 293 |
+
self.attention = Attention(config)
|
| 294 |
+
self.feed_forward = FeedForward(config)
|
| 295 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 296 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 297 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 298 |
+
|
| 299 |
+
def forward(
|
| 300 |
+
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
|
| 301 |
+
h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask))
|
| 302 |
+
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
|
| 303 |
+
return out
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class Transformer(nn.Module):
|
| 307 |
+
def __init__(self, config: ModelArgs):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.config = config
|
| 310 |
+
self.vocab_size = config.vocab_size
|
| 311 |
+
self.n_layer = config.n_layer
|
| 312 |
+
self.block_size = config.block_size
|
| 313 |
+
self.num_classes = config.num_classes
|
| 314 |
+
self.model_type = config.model_type
|
| 315 |
+
self.cls_token_num = config.cls_token_num
|
| 316 |
+
self.condition_token_num = config.condition_token_num
|
| 317 |
+
self.layer_internal = config.n_layer // 3
|
| 318 |
+
# self.adapter = Adapter(output_dim=config.dim)
|
| 319 |
+
self.adapter = ViT_Adapter()
|
| 320 |
+
# self.adapter = Deit_Adapter()
|
| 321 |
+
# self.adapter = EVA_Adapter(img_size=256, in_chans=3, embed_dim=384)
|
| 322 |
+
# self.adapter = Dinov2_Adapter(adapter_size='base')
|
| 323 |
+
# self.adapter = EVA_Adapter()
|
| 324 |
+
self.adapter_mlp = MLP(384, config.dim, config.dim)
|
| 325 |
+
# self.adapter_mlp = MLP(768, config.dim, config.dim)
|
| 326 |
+
# self.cross_attention = nn.MultiheadAttention(embed_dim=config.dim, num_heads=8,batch_first=True)
|
| 327 |
+
if self.model_type == 'c2i':
|
| 328 |
+
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
|
| 329 |
+
elif self.model_type == 't2i':
|
| 330 |
+
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob)
|
| 331 |
+
else:
|
| 332 |
+
raise Exception("please check model type")
|
| 333 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 334 |
+
self.tok_dropout = nn.Dropout(config.token_dropout_p)
|
| 335 |
+
|
| 336 |
+
self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 337 |
+
self.condition_mlp = ConditionEmbedder((config.image_size // 16)**2, config.dim, config.class_dropout_prob, (config.image_size // 16)**2, config.vocab_size)
|
| 338 |
+
|
| 339 |
+
self.condition_layers = torch.nn.ModuleList()
|
| 340 |
+
for layer_id in range(3):
|
| 341 |
+
self.condition_layers.append(MLP(config.dim,config.dim,config.dim))
|
| 342 |
+
|
| 343 |
+
# transformer blocks
|
| 344 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
|
| 345 |
+
self.layers = torch.nn.ModuleList()
|
| 346 |
+
for layer_id in range(config.n_layer):
|
| 347 |
+
self.layers.append(TransformerBlock(config, dpr[layer_id]))
|
| 348 |
+
|
| 349 |
+
# output layer
|
| 350 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 351 |
+
self.condition_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 352 |
+
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
|
| 353 |
+
|
| 354 |
+
# 2d rotary pos embedding
|
| 355 |
+
grid_size = int(self.block_size ** 0.5)
|
| 356 |
+
assert grid_size * grid_size == self.block_size
|
| 357 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num+self.condition_token_num)
|
| 358 |
+
|
| 359 |
+
# KVCache
|
| 360 |
+
self.max_batch_size = -1
|
| 361 |
+
self.max_seq_length = -1
|
| 362 |
+
|
| 363 |
+
self.initialize_weights()
|
| 364 |
+
self.condition_token = None
|
| 365 |
+
self.global_token = None
|
| 366 |
+
self.mask = get_causal_mask(256)
|
| 367 |
+
|
| 368 |
+
def initialize_weights(self):
|
| 369 |
+
# Initialize nn.Linear and nn.Embedding
|
| 370 |
+
self.apply(self._init_weights)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def _init_weights(self, module):
|
| 374 |
+
std = self.config.initializer_range
|
| 375 |
+
if isinstance(module, nn.Linear):
|
| 376 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 377 |
+
if module.bias is not None:
|
| 378 |
+
module.bias.data.zero_()
|
| 379 |
+
elif isinstance(module, nn.Embedding):
|
| 380 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 381 |
+
|
| 382 |
+
def setup_caches(self, max_batch_size, max_seq_length, dtype):
|
| 383 |
+
# if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
| 384 |
+
# return
|
| 385 |
+
head_dim = self.config.dim // self.config.n_head
|
| 386 |
+
max_seq_length = find_multiple(max_seq_length, 8) #
|
| 387 |
+
self.max_seq_length = max_seq_length
|
| 388 |
+
self.max_batch_size = max_batch_size
|
| 389 |
+
for b in self.layers:
|
| 390 |
+
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)
|
| 391 |
+
|
| 392 |
+
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
|
| 393 |
+
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1)
|
| 394 |
+
grid_size = int(self.config.block_size ** 0.5)
|
| 395 |
+
assert grid_size * grid_size == self.block_size
|
| 396 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num+self.condition_token_num)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def forward(
|
| 401 |
+
self,
|
| 402 |
+
idx: torch.Tensor,
|
| 403 |
+
cond_idx: torch.Tensor, # cond_idx_or_embed
|
| 404 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 405 |
+
targets: Optional[torch.Tensor] = None,
|
| 406 |
+
mask: Optional[torch.Tensor] = None,
|
| 407 |
+
valid: Optional[torch.Tensor] = None,
|
| 408 |
+
condition: Optional[torch.Tensor] = None
|
| 409 |
+
):
|
| 410 |
+
if idx is not None and cond_idx is not None: # training or naive inference
|
| 411 |
+
cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training) # 文本嵌入
|
| 412 |
+
cond_embeddings = cond_embeddings[:,:self.cls_token_num]
|
| 413 |
+
token_embeddings = self.tok_embeddings(idx) # 原始图像嵌入
|
| 414 |
+
if condition is not None:
|
| 415 |
+
condition_embeddings = self.adapter(condition) # 控制图像(深度图 边缘图)嵌入
|
| 416 |
+
condition_embeddings = self.adapter_mlp(condition_embeddings)
|
| 417 |
+
|
| 418 |
+
self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids)
|
| 419 |
+
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)
|
| 420 |
+
h = self.tok_dropout(token_embeddings)
|
| 421 |
+
self.freqs_cis = self.freqs_cis.to(h.device)
|
| 422 |
+
else:
|
| 423 |
+
if cond_idx is not None: # prefill in inference
|
| 424 |
+
token_embeddings = self.cls_embedding(cond_idx, train=self.training)
|
| 425 |
+
token_embeddings = token_embeddings[:,:self.cls_token_num]
|
| 426 |
+
if condition is not None:
|
| 427 |
+
condition_embeddings = self.condition_mlp(condition.to(torch.bfloat16),train=self.training)
|
| 428 |
+
self.condition_token = condition_embeddings
|
| 429 |
+
else: # decode_n_tokens(kv cache) in inference
|
| 430 |
+
token_embeddings = self.tok_embeddings(idx)
|
| 431 |
+
bs = token_embeddings.shape[0]
|
| 432 |
+
mask = self.causal_mask[:bs, None, input_pos]
|
| 433 |
+
h = self.tok_dropout(token_embeddings)
|
| 434 |
+
self.freqs_cis = self.freqs_cis
|
| 435 |
+
if self.training:
|
| 436 |
+
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]]
|
| 437 |
+
else:
|
| 438 |
+
freqs_cis = self.freqs_cis[input_pos]
|
| 439 |
+
# transformer blocks
|
| 440 |
+
for i, layer in enumerate(self.layers):
|
| 441 |
+
if i%self.layer_internal == 0: #每隔layer_internal=10层进行一次插入条件控制信息 会在第 0, 10, 20, 30 层做 condition 注入
|
| 442 |
+
if self.training:# h = torch.cat((cond_embeddings, token_embeddings), dim=1)
|
| 443 |
+
h = h + self.condition_layers[i//self.layer_internal](self.condition_token)
|
| 444 |
+
else:
|
| 445 |
+
if len(input_pos)>1:
|
| 446 |
+
h[:,-1:] = h[:,-1:] + self.condition_layers[i//self.layer_internal](self.condition_token[:,0:1])
|
| 447 |
+
else:
|
| 448 |
+
h = h + self.condition_layers[i//self.layer_internal](self.condition_token[:,input_pos])
|
| 449 |
+
h = layer(h, freqs_cis, input_pos, mask)
|
| 450 |
+
# output layers
|
| 451 |
+
h = self.norm(h)
|
| 452 |
+
logits = self.output(h).float()
|
| 453 |
+
|
| 454 |
+
if self.training:
|
| 455 |
+
logits = logits[:, self.cls_token_num+self.condition_token_num - 1:].contiguous()
|
| 456 |
+
# if we are given some desired targets also calculate the loss
|
| 457 |
+
loss = None
|
| 458 |
+
if valid is not None:
|
| 459 |
+
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
|
| 460 |
+
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
|
| 461 |
+
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
|
| 462 |
+
elif targets is not None:
|
| 463 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 464 |
+
|
| 465 |
+
return logits, loss
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
| 469 |
+
return list(self.layers)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
#################################################################################
|
| 474 |
+
# Rotary Positional Embedding Functions #
|
| 475 |
+
#################################################################################
|
| 476 |
+
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 477 |
+
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 478 |
+
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
| 479 |
+
t = torch.arange(seq_len, device=freqs.device)
|
| 480 |
+
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
|
| 481 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 482 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 483 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 484 |
+
return cond_cache
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 488 |
+
# split the dimension into half, one for x and one for y
|
| 489 |
+
half_dim = n_elem // 2
|
| 490 |
+
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
|
| 491 |
+
t = torch.arange(grid_size, device=freqs.device)
|
| 492 |
+
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
|
| 493 |
+
freqs_grid = torch.concat([
|
| 494 |
+
freqs[:, None, :].expand(-1, grid_size, -1),
|
| 495 |
+
freqs[None, :, :].expand(grid_size, -1, -1),
|
| 496 |
+
], dim=-1) # (grid_size, grid_size, head_dim // 2)
|
| 497 |
+
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
|
| 498 |
+
cache = cache_grid.flatten(0, 1)
|
| 499 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
|
| 500 |
+
return cond_cache
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
|
| 504 |
+
# x: (bs, seq_len, n_head, head_dim)
|
| 505 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
| 506 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
|
| 507 |
+
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
|
| 508 |
+
x_out2 = torch.stack([
|
| 509 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
| 510 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
| 511 |
+
], dim=-1)
|
| 512 |
+
x_out2 = x_out2.flatten(3)
|
| 513 |
+
return x_out2.type_as(x)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
#################################################################################
|
| 518 |
+
# GPT Configs #
|
| 519 |
+
#################################################################################
|
| 520 |
+
### text-conditional
|
| 521 |
+
def GPT_7B(**kwargs):
|
| 522 |
+
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
|
| 523 |
+
|
| 524 |
+
def GPT_3B(**kwargs):
|
| 525 |
+
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
|
| 526 |
+
|
| 527 |
+
def GPT_1B(**kwargs):
|
| 528 |
+
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
|
| 529 |
+
|
| 530 |
+
### class-conditional
|
| 531 |
+
def GPT_XXXL(**kwargs):
|
| 532 |
+
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
|
| 533 |
+
|
| 534 |
+
def GPT_XXL(**kwargs):
|
| 535 |
+
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
|
| 536 |
+
|
| 537 |
+
def GPT_XL(**kwargs):
|
| 538 |
+
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
|
| 539 |
+
|
| 540 |
+
def GPT_L(**kwargs):
|
| 541 |
+
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
|
| 542 |
+
|
| 543 |
+
def GPT_B(**kwargs):
|
| 544 |
+
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
GPT_models = {
|
| 548 |
+
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
|
| 549 |
+
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
|
| 550 |
+
}
|
autoregressive/models/gpt_t2i.py
ADDED
|
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py
|
| 3 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 4 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 5 |
+
# llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py
|
| 6 |
+
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 7 |
+
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional, List
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from torch.nn import functional as F
|
| 15 |
+
from utils.drop_path import DropPath
|
| 16 |
+
from autoregressive.models.vit_adapter import ViT_Adapter
|
| 17 |
+
from autoregressive.models.dinov2_adapter import Dinov2_Adapter
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_causal_mask(seq_length):
|
| 21 |
+
mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool)
|
| 22 |
+
mask = mask.masked_fill(mask, float('-inf'))
|
| 23 |
+
mask = mask.masked_fill(~mask, float(0.0))
|
| 24 |
+
return mask
|
| 25 |
+
|
| 26 |
+
def find_multiple(n: int, k: int):
|
| 27 |
+
if n % k == 0:
|
| 28 |
+
return n
|
| 29 |
+
return n + k - (n % k)
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class ModelArgs:
|
| 33 |
+
dim: int = 4096
|
| 34 |
+
n_layer: int = 32
|
| 35 |
+
n_head: int = 32
|
| 36 |
+
n_kv_head: Optional[int] = None
|
| 37 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
| 38 |
+
ffn_dim_multiplier: Optional[float] = None
|
| 39 |
+
rope_base: float = 10000
|
| 40 |
+
norm_eps: float = 1e-5
|
| 41 |
+
initializer_range: float = 0.02
|
| 42 |
+
|
| 43 |
+
token_dropout_p: float = 0.1
|
| 44 |
+
attn_dropout_p: float = 0.0
|
| 45 |
+
resid_dropout_p: float = 0.1
|
| 46 |
+
ffn_dropout_p: float = 0.1
|
| 47 |
+
drop_path_rate: float = 0.0
|
| 48 |
+
|
| 49 |
+
num_classes: int = 1000
|
| 50 |
+
caption_dim: int = 2048
|
| 51 |
+
class_dropout_prob: float = 0.1
|
| 52 |
+
model_type: str = 'c2i'
|
| 53 |
+
|
| 54 |
+
vocab_size: int = 16384
|
| 55 |
+
cls_token_num: int = 1
|
| 56 |
+
block_size: int = 256
|
| 57 |
+
max_batch_size: int = 32
|
| 58 |
+
max_seq_len: int = 2048
|
| 59 |
+
adapter_size: str = 'small'
|
| 60 |
+
condition_type: str = 'canny'
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
#################################################################################
|
| 65 |
+
# Embedding Layers for Class Labels #
|
| 66 |
+
#################################################################################
|
| 67 |
+
class LabelEmbedder(nn.Module):
|
| 68 |
+
"""
|
| 69 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
| 70 |
+
"""
|
| 71 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 72 |
+
super().__init__()
|
| 73 |
+
use_cfg_embedding = dropout_prob > 0
|
| 74 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 75 |
+
self.num_classes = num_classes
|
| 76 |
+
self.dropout_prob = dropout_prob
|
| 77 |
+
|
| 78 |
+
def token_drop(self, labels, force_drop_ids=None):
|
| 79 |
+
"""
|
| 80 |
+
Drops labels to enable classifier-free guidance.
|
| 81 |
+
"""
|
| 82 |
+
if force_drop_ids is None:
|
| 83 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 84 |
+
else:
|
| 85 |
+
drop_ids = force_drop_ids == 1
|
| 86 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
| 87 |
+
return labels, drop_ids
|
| 88 |
+
|
| 89 |
+
def forward(self, labels, train, force_drop_ids=None):
|
| 90 |
+
use_dropout = self.dropout_prob > 0
|
| 91 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 92 |
+
labels,drop_ids = self.token_drop(labels, force_drop_ids)
|
| 93 |
+
embeddings = self.embedding_table(labels).unsqueeze(1)
|
| 94 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 95 |
+
return embeddings,drop_ids
|
| 96 |
+
else:
|
| 97 |
+
return embeddings
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class ConditionEmbedder(nn.Module):
|
| 101 |
+
"""
|
| 102 |
+
Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance.
|
| 103 |
+
"""
|
| 104 |
+
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size)
|
| 107 |
+
self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5)
|
| 108 |
+
self.uncond_prob = uncond_prob
|
| 109 |
+
|
| 110 |
+
def token_drop(self, caption, force_drop_ids=None, drop_ids=None):
|
| 111 |
+
"""
|
| 112 |
+
Drops labels to enable classifier-free guidance.
|
| 113 |
+
"""
|
| 114 |
+
if force_drop_ids is None:
|
| 115 |
+
if drop_ids is None:
|
| 116 |
+
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
|
| 117 |
+
else:
|
| 118 |
+
drop_ids = force_drop_ids == 1
|
| 119 |
+
|
| 120 |
+
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding[:caption.shape[1]], caption)
|
| 121 |
+
return caption
|
| 122 |
+
|
| 123 |
+
def forward(self, caption, train, force_drop_ids=None, drop_ids=None):
|
| 124 |
+
use_dropout = self.uncond_prob > 0
|
| 125 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 126 |
+
caption = self.token_drop(caption, force_drop_ids, drop_ids)
|
| 127 |
+
embeddings = self.cap_proj(caption)
|
| 128 |
+
return embeddings
|
| 129 |
+
|
| 130 |
+
#################################################################################
|
| 131 |
+
# Embedding Layers for Text Feature #
|
| 132 |
+
#################################################################################
|
| 133 |
+
class CaptionEmbedder(nn.Module):
|
| 134 |
+
"""
|
| 135 |
+
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance.
|
| 136 |
+
"""
|
| 137 |
+
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120):
|
| 138 |
+
super().__init__()
|
| 139 |
+
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size)
|
| 140 |
+
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
|
| 141 |
+
self.uncond_prob = uncond_prob
|
| 142 |
+
|
| 143 |
+
def token_drop(self, caption, force_drop_ids=None):
|
| 144 |
+
"""
|
| 145 |
+
Drops labels to enable classifier-free guidance.
|
| 146 |
+
"""
|
| 147 |
+
if force_drop_ids is None:
|
| 148 |
+
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
|
| 149 |
+
else:
|
| 150 |
+
drop_ids = force_drop_ids == 1
|
| 151 |
+
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption)
|
| 152 |
+
return caption, drop_ids
|
| 153 |
+
|
| 154 |
+
def forward(self, caption, train, force_drop_ids=None):
|
| 155 |
+
use_dropout = self.uncond_prob > 0
|
| 156 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 157 |
+
caption, drop_ids = self.token_drop(caption, force_drop_ids)
|
| 158 |
+
embeddings = self.cap_proj(caption)
|
| 159 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 160 |
+
return embeddings,drop_ids
|
| 161 |
+
else:
|
| 162 |
+
return embeddings
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class MLP(nn.Module):
|
| 166 |
+
def __init__(self, in_features, hidden_features, out_features):
|
| 167 |
+
super().__init__()
|
| 168 |
+
out_features = out_features or in_features
|
| 169 |
+
hidden_features = hidden_features or in_features
|
| 170 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
|
| 171 |
+
self.act = nn.GELU(approximate='tanh')
|
| 172 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 173 |
+
|
| 174 |
+
nn.init.zeros_(self.fc1.weight)
|
| 175 |
+
nn.init.zeros_(self.fc2.weight)
|
| 176 |
+
|
| 177 |
+
def forward(self, x):
|
| 178 |
+
x = self.fc1(x)
|
| 179 |
+
x = self.act(x)
|
| 180 |
+
x = self.fc2(x)
|
| 181 |
+
return x
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
#################################################################################
|
| 185 |
+
# GPT Model #
|
| 186 |
+
#################################################################################
|
| 187 |
+
class RMSNorm(torch.nn.Module):
|
| 188 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.eps = eps
|
| 191 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 192 |
+
|
| 193 |
+
def _norm(self, x):
|
| 194 |
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 195 |
+
|
| 196 |
+
def forward(self, x):
|
| 197 |
+
output = self._norm(x.float()).type_as(x)
|
| 198 |
+
return output * self.weight
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class FeedForward(nn.Module):
|
| 202 |
+
def __init__(self, config: ModelArgs):
|
| 203 |
+
super().__init__()
|
| 204 |
+
hidden_dim = 4 * config.dim
|
| 205 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 206 |
+
# custom dim factor multiplier
|
| 207 |
+
if config.ffn_dim_multiplier is not None:
|
| 208 |
+
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
|
| 209 |
+
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
|
| 210 |
+
|
| 211 |
+
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 212 |
+
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 213 |
+
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
|
| 214 |
+
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
|
| 215 |
+
|
| 216 |
+
def forward(self, x):
|
| 217 |
+
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class KVCache(nn.Module):
|
| 221 |
+
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
|
| 222 |
+
super().__init__()
|
| 223 |
+
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
|
| 224 |
+
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 225 |
+
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
| 226 |
+
|
| 227 |
+
def update(self, input_pos, k_val, v_val):
|
| 228 |
+
# input_pos: [S], k_val: [B, H, S, D]
|
| 229 |
+
assert input_pos.shape[0] == k_val.shape[2]
|
| 230 |
+
k_out = self.k_cache
|
| 231 |
+
v_out = self.v_cache
|
| 232 |
+
k_out[:, :, input_pos] = k_val
|
| 233 |
+
v_out[:, :, input_pos] = v_val
|
| 234 |
+
|
| 235 |
+
return k_out, v_out
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class Attention(nn.Module):
|
| 239 |
+
def __init__(self, config: ModelArgs):
|
| 240 |
+
super().__init__()
|
| 241 |
+
assert config.dim % config.n_head == 0
|
| 242 |
+
self.dim = config.dim
|
| 243 |
+
self.head_dim = config.dim // config.n_head
|
| 244 |
+
self.n_head = config.n_head
|
| 245 |
+
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
|
| 246 |
+
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
|
| 247 |
+
|
| 248 |
+
# key, query, value projections for all heads, but in a batch
|
| 249 |
+
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
|
| 250 |
+
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
| 251 |
+
self.kv_cache = None
|
| 252 |
+
|
| 253 |
+
# regularization
|
| 254 |
+
self.attn_dropout_p = config.attn_dropout_p
|
| 255 |
+
self.resid_dropout = nn.Dropout(config.resid_dropout_p)
|
| 256 |
+
|
| 257 |
+
def forward(
|
| 258 |
+
self, x: torch.Tensor, freqs_cis: torch.Tensor = None,
|
| 259 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 260 |
+
mask: Optional[torch.Tensor] = None
|
| 261 |
+
):
|
| 262 |
+
bsz, seqlen, _ = x.shape
|
| 263 |
+
kv_size = self.n_kv_head * self.head_dim
|
| 264 |
+
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
| 265 |
+
|
| 266 |
+
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 267 |
+
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 268 |
+
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
|
| 269 |
+
|
| 270 |
+
xq = apply_rotary_emb(xq, freqs_cis)
|
| 271 |
+
xk = apply_rotary_emb(xk, freqs_cis)
|
| 272 |
+
|
| 273 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 274 |
+
|
| 275 |
+
if self.kv_cache is not None:
|
| 276 |
+
keys, values = self.kv_cache.update(input_pos, xk, xv)
|
| 277 |
+
else:
|
| 278 |
+
keys, values = xk, xv
|
| 279 |
+
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 280 |
+
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
|
| 281 |
+
|
| 282 |
+
output = F.scaled_dot_product_attention(
|
| 283 |
+
xq, keys, values,
|
| 284 |
+
attn_mask=mask,
|
| 285 |
+
is_causal=True if mask is None else False, # is_causal=False is for KV cache
|
| 286 |
+
dropout_p=self.attn_dropout_p if self.training else 0)
|
| 287 |
+
|
| 288 |
+
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
| 289 |
+
|
| 290 |
+
output = self.resid_dropout(self.wo(output))
|
| 291 |
+
return output
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class TransformerBlock(nn.Module):
|
| 295 |
+
def __init__(self, config: ModelArgs, drop_path: float):
|
| 296 |
+
super().__init__()
|
| 297 |
+
self.attention = Attention(config)
|
| 298 |
+
self.feed_forward = FeedForward(config)
|
| 299 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 300 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 301 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 302 |
+
|
| 303 |
+
def forward(
|
| 304 |
+
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
|
| 305 |
+
h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask))
|
| 306 |
+
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
|
| 307 |
+
return out
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
class Transformer(nn.Module):
|
| 311 |
+
def __init__(self, config: ModelArgs):
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.config = config
|
| 314 |
+
self.vocab_size = config.vocab_size
|
| 315 |
+
self.n_layer = config.n_layer
|
| 316 |
+
self.block_size = config.block_size
|
| 317 |
+
self.num_classes = config.num_classes
|
| 318 |
+
self.model_type = config.model_type
|
| 319 |
+
self.cls_token_num = config.cls_token_num
|
| 320 |
+
self.layer_internal = config.n_layer // 3
|
| 321 |
+
# self.adapter = Adapter(output_dim=768)
|
| 322 |
+
# self.adapter = ViT_Adapter()
|
| 323 |
+
# self.adapter = DeiT_Adapter()
|
| 324 |
+
self.adapter = Dinov2_Adapter(adapter_size=config.adapter_size, condition_type=config.condition_type)
|
| 325 |
+
# self.adapter = EVA_Adapter()
|
| 326 |
+
if config.adapter_size == "small":
|
| 327 |
+
self.adapter_mlp = MLP(384, config.dim, config.dim)
|
| 328 |
+
elif config.adapter_size == 'base':
|
| 329 |
+
self.adapter_mlp = MLP(768, config.dim, config.dim)
|
| 330 |
+
|
| 331 |
+
if self.model_type == 'c2i':
|
| 332 |
+
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
|
| 333 |
+
elif self.model_type == 't2i':
|
| 334 |
+
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob)
|
| 335 |
+
else:
|
| 336 |
+
raise Exception("please check model type")
|
| 337 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 338 |
+
self.tok_dropout = nn.Dropout(config.token_dropout_p)
|
| 339 |
+
|
| 340 |
+
self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 341 |
+
self.condition_mlp = ConditionEmbedder(self.block_size, config.dim, config.class_dropout_prob, self.block_size, config.vocab_size)
|
| 342 |
+
self.condition_layers = torch.nn.ModuleList()
|
| 343 |
+
for layer_id in range(3):
|
| 344 |
+
self.condition_layers.append(MLP(config.dim,config.dim,config.dim))
|
| 345 |
+
|
| 346 |
+
# transformer blocks
|
| 347 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
|
| 348 |
+
self.layers = torch.nn.ModuleList()
|
| 349 |
+
for layer_id in range(config.n_layer):
|
| 350 |
+
self.layers.append(TransformerBlock(config, dpr[layer_id]))
|
| 351 |
+
|
| 352 |
+
# output layer
|
| 353 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 354 |
+
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
|
| 355 |
+
|
| 356 |
+
# 2d rotary pos embedding
|
| 357 |
+
grid_size = int(self.block_size ** 0.5)
|
| 358 |
+
assert grid_size * grid_size == self.block_size
|
| 359 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
|
| 360 |
+
|
| 361 |
+
# KVCache
|
| 362 |
+
self.max_batch_size = -1
|
| 363 |
+
self.max_seq_length = -1
|
| 364 |
+
|
| 365 |
+
self.initialize_weights()
|
| 366 |
+
self.condition_token = None
|
| 367 |
+
self.mask = get_causal_mask(256)
|
| 368 |
+
self.global_token = None
|
| 369 |
+
|
| 370 |
+
self.control_strength = 1
|
| 371 |
+
|
| 372 |
+
def initialize_weights(self):
|
| 373 |
+
# Initialize nn.Linear and nn.Embedding
|
| 374 |
+
self.apply(self._init_weights)
|
| 375 |
+
|
| 376 |
+
# Zero-out output layers:
|
| 377 |
+
nn.init.constant_(self.output.weight, 0)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def _init_weights(self, module):
|
| 382 |
+
std = self.config.initializer_range
|
| 383 |
+
if isinstance(module, nn.Linear):
|
| 384 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 385 |
+
if module.bias is not None:
|
| 386 |
+
module.bias.data.zero_()
|
| 387 |
+
elif isinstance(module, nn.Embedding):
|
| 388 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def setup_caches(self, max_batch_size, max_seq_length, dtype):
|
| 392 |
+
# if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
| 393 |
+
# return
|
| 394 |
+
head_dim = self.config.dim // self.config.n_head
|
| 395 |
+
max_seq_length = find_multiple(max_seq_length, 8) #
|
| 396 |
+
self.max_seq_length = max_seq_length
|
| 397 |
+
self.max_batch_size = max_batch_size
|
| 398 |
+
for b in self.layers:
|
| 399 |
+
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)
|
| 400 |
+
|
| 401 |
+
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
|
| 402 |
+
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1)
|
| 403 |
+
grid_size = int(self.config.block_size ** 0.5)
|
| 404 |
+
assert grid_size * grid_size == self.block_size
|
| 405 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def forward(
|
| 410 |
+
self,
|
| 411 |
+
idx: torch.Tensor,
|
| 412 |
+
cond_idx: torch.Tensor, # cond_idx_or_embed
|
| 413 |
+
input_pos: Optional[torch.Tensor] = None,
|
| 414 |
+
targets: Optional[torch.Tensor] = None,
|
| 415 |
+
mask: Optional[torch.Tensor] = None,
|
| 416 |
+
valid: Optional[torch.Tensor] = None,
|
| 417 |
+
condition: Optional[torch.Tensor] = None,
|
| 418 |
+
control_strength: Optional[int] = 1
|
| 419 |
+
):
|
| 420 |
+
if idx is not None and cond_idx is not None: # training or naive inference
|
| 421 |
+
cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training)#生成条件嵌入
|
| 422 |
+
cond_embeddings = cond_embeddings[:,:self.cls_token_num]
|
| 423 |
+
token_embeddings = self.tok_embeddings(idx)
|
| 424 |
+
if condition is not None:
|
| 425 |
+
condition_embeddings = self.adapter(condition)
|
| 426 |
+
condition_embeddings = self.adapter_mlp(condition_embeddings)
|
| 427 |
+
self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids)
|
| 428 |
+
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)
|
| 429 |
+
|
| 430 |
+
h = self.tok_dropout(token_embeddings)
|
| 431 |
+
self.freqs_cis = self.freqs_cis.to(h.device)
|
| 432 |
+
else:
|
| 433 |
+
if cond_idx is not None: # prefill in inference
|
| 434 |
+
self.control_strength = control_strength
|
| 435 |
+
token_embeddings = self.cls_embedding(cond_idx, train=self.training)
|
| 436 |
+
token_embeddings = token_embeddings[:,:self.cls_token_num]
|
| 437 |
+
if condition is not None:
|
| 438 |
+
condition_embeddings = self.condition_mlp(condition, train=self.training)#.to(torch.bfloat16),train=self.training)
|
| 439 |
+
self.condition_token = condition_embeddings
|
| 440 |
+
self.condition_token = [self.condition_layers[0](self.condition_token),
|
| 441 |
+
self.condition_layers[1](self.condition_token),
|
| 442 |
+
self.condition_layers[2](self.condition_token)]
|
| 443 |
+
|
| 444 |
+
else: # decode_n_tokens(kv cache) in inference
|
| 445 |
+
token_embeddings = self.tok_embeddings(idx)
|
| 446 |
+
bs = token_embeddings.shape[0]
|
| 447 |
+
mask = self.causal_mask[:bs, None, input_pos]
|
| 448 |
+
h = self.tok_dropout(token_embeddings)
|
| 449 |
+
self.freqs_cis = self.freqs_cis
|
| 450 |
+
|
| 451 |
+
if self.training:
|
| 452 |
+
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]]
|
| 453 |
+
else:
|
| 454 |
+
freqs_cis = self.freqs_cis[input_pos]
|
| 455 |
+
# transformer blocks
|
| 456 |
+
for i, layer in enumerate(self.layers):
|
| 457 |
+
if i%self.layer_internal == 0:
|
| 458 |
+
if self.training:
|
| 459 |
+
h[:, self.cls_token_num-1:] = h[:, self.cls_token_num-1:] + self.condition_layers[i//self.layer_internal](self.condition_token)
|
| 460 |
+
else:
|
| 461 |
+
if len(input_pos)>1:
|
| 462 |
+
# h[:, -1:] = h[:, -1:] + self.condition_layers[i//self.layer_internal](self.condition_token[:,0:1])
|
| 463 |
+
h[:,-1:] = h[:, -1:] + self.control_strength*self.condition_token[i//self.layer_internal][:,0:1]
|
| 464 |
+
else:
|
| 465 |
+
# h = h + self.condition_layers[i//self.layer_internal](self.condition_token[:,input_pos-self.cls_token_num+1])
|
| 466 |
+
h = h + self.control_strength*self.condition_token[i//self.layer_internal][:,input_pos-self.cls_token_num+1]
|
| 467 |
+
h = layer(h, freqs_cis, input_pos, mask)
|
| 468 |
+
# output layers
|
| 469 |
+
h = self.norm(h)
|
| 470 |
+
logits = self.output(h).float()
|
| 471 |
+
|
| 472 |
+
if self.training:
|
| 473 |
+
logits = logits[:, self.cls_token_num - 1:].contiguous()
|
| 474 |
+
# if we are given some desired targets also calculate the loss
|
| 475 |
+
loss = None
|
| 476 |
+
if valid is not None:
|
| 477 |
+
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
|
| 478 |
+
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
|
| 479 |
+
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
|
| 480 |
+
elif targets is not None:
|
| 481 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
return logits, loss
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
| 488 |
+
return list(self.layers)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
#################################################################################
|
| 493 |
+
# Rotary Positional Embedding Functions #
|
| 494 |
+
#################################################################################
|
| 495 |
+
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 496 |
+
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 497 |
+
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
| 498 |
+
t = torch.arange(seq_len, device=freqs.device)
|
| 499 |
+
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
|
| 500 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 501 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 502 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 503 |
+
return cond_cache
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 507 |
+
# split the dimension into half, one for x and one for y
|
| 508 |
+
half_dim = n_elem // 2
|
| 509 |
+
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
|
| 510 |
+
t = torch.arange(grid_size, device=freqs.device)
|
| 511 |
+
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
|
| 512 |
+
freqs_grid = torch.concat([
|
| 513 |
+
freqs[:, None, :].expand(-1, grid_size, -1),
|
| 514 |
+
freqs[None, :, :].expand(grid_size, -1, -1),
|
| 515 |
+
], dim=-1) # (grid_size, grid_size, head_dim // 2)
|
| 516 |
+
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
|
| 517 |
+
cache = cache_grid.flatten(0, 1)
|
| 518 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
|
| 519 |
+
return cond_cache
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
|
| 523 |
+
# x: (bs, seq_len, n_head, head_dim)
|
| 524 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
| 525 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
|
| 526 |
+
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
|
| 527 |
+
x_out2 = torch.stack([
|
| 528 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
| 529 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
| 530 |
+
], dim=-1)
|
| 531 |
+
x_out2 = x_out2.flatten(3)
|
| 532 |
+
return x_out2.type_as(x)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
#################################################################################
|
| 537 |
+
# GPT Configs #
|
| 538 |
+
#################################################################################
|
| 539 |
+
### text-conditional
|
| 540 |
+
def GPT_7B(**kwargs):
|
| 541 |
+
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
|
| 542 |
+
|
| 543 |
+
def GPT_3B(**kwargs):
|
| 544 |
+
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
|
| 545 |
+
|
| 546 |
+
def GPT_1B(**kwargs):
|
| 547 |
+
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
|
| 548 |
+
|
| 549 |
+
### class-conditional
|
| 550 |
+
def GPT_XXXL(**kwargs):
|
| 551 |
+
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
|
| 552 |
+
|
| 553 |
+
def GPT_XXL(**kwargs):
|
| 554 |
+
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
|
| 555 |
+
|
| 556 |
+
def GPT_XL(**kwargs):
|
| 557 |
+
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
|
| 558 |
+
|
| 559 |
+
def GPT_L(**kwargs):
|
| 560 |
+
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
|
| 561 |
+
|
| 562 |
+
def GPT_B(**kwargs):
|
| 563 |
+
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
GPT_models = {
|
| 567 |
+
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
|
| 568 |
+
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
|
| 569 |
+
}
|
autoregressive/models/vit_adapter.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ViT_Adapter(nn.Module):
|
| 9 |
+
def __init__(self, input_dim=3, output_dim=768, attention=False, pool=False, nheads=8, dropout=0.1):
|
| 10 |
+
super(ViT_Adapter, self).__init__()
|
| 11 |
+
self.model = AutoModel.from_pretrained('autoregressive/models/vit-small')
|
| 12 |
+
|
| 13 |
+
def forward(self, x):
|
| 14 |
+
x = self.model(x,interpolate_pos_encoding=True)
|
| 15 |
+
return x.last_hidden_state[:, 1:]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
if __name__ == '__main__':
|
| 19 |
+
model = ViT_Adapter().cuda()
|
| 20 |
+
import pdb;pdb.set_trace()
|
| 21 |
+
print(sum(p.numel() for p in model.parameters()))
|
| 22 |
+
inputs = torch.randn(4,3,512,512).cuda()
|
| 23 |
+
|
| 24 |
+
outputs = model(inputs)
|
| 25 |
+
|
| 26 |
+
print(outputs.shape)
|
autoregressive/sample/sample_c2i_ddp.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py
|
| 3 |
+
import torch
|
| 4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 5 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import numpy as np
|
| 13 |
+
import math
|
| 14 |
+
import argparse
|
| 15 |
+
|
| 16 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 17 |
+
from autoregressive.models.gpt import GPT_models
|
| 18 |
+
from autoregressive.models.generate import generate
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 22 |
+
"""
|
| 23 |
+
Builds a single .npz file from a folder of .png samples.
|
| 24 |
+
"""
|
| 25 |
+
samples = []
|
| 26 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 27 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 28 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 29 |
+
samples.append(sample_np)
|
| 30 |
+
samples = np.stack(samples)
|
| 31 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 32 |
+
npz_path = f"{sample_dir}.npz"
|
| 33 |
+
np.savez(npz_path, arr_0=samples)
|
| 34 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 35 |
+
return npz_path
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def main(args):
|
| 39 |
+
# Setup PyTorch:
|
| 40 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 41 |
+
torch.set_grad_enabled(False)
|
| 42 |
+
|
| 43 |
+
# Setup DDP:
|
| 44 |
+
dist.init_process_group("nccl")
|
| 45 |
+
rank = dist.get_rank()
|
| 46 |
+
device = rank % torch.cuda.device_count()
|
| 47 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 48 |
+
torch.manual_seed(seed)
|
| 49 |
+
torch.cuda.set_device(device)
|
| 50 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 51 |
+
|
| 52 |
+
# create and load model
|
| 53 |
+
vq_model = VQ_models[args.vq_model](
|
| 54 |
+
codebook_size=args.codebook_size,
|
| 55 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 56 |
+
vq_model.to(device)
|
| 57 |
+
vq_model.eval()
|
| 58 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 59 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 60 |
+
del checkpoint
|
| 61 |
+
|
| 62 |
+
# create and load gpt model
|
| 63 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 64 |
+
latent_size = args.image_size // args.downsample_size
|
| 65 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 66 |
+
vocab_size=args.codebook_size,
|
| 67 |
+
block_size=latent_size ** 2,
|
| 68 |
+
num_classes=args.num_classes,
|
| 69 |
+
cls_token_num=args.cls_token_num,
|
| 70 |
+
model_type=args.gpt_type,
|
| 71 |
+
).to(device=device, dtype=precision)
|
| 72 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 73 |
+
if args.from_fsdp: # fsdp
|
| 74 |
+
model_weight = checkpoint
|
| 75 |
+
elif "model" in checkpoint: # ddp
|
| 76 |
+
model_weight = checkpoint["model"]
|
| 77 |
+
elif "module" in checkpoint: # deepspeed
|
| 78 |
+
model_weight = checkpoint["module"]
|
| 79 |
+
elif "state_dict" in checkpoint:
|
| 80 |
+
model_weight = checkpoint["state_dict"]
|
| 81 |
+
else:
|
| 82 |
+
raise Exception("please check model weight, maybe add --from-fsdp to run command")
|
| 83 |
+
# if 'freqs_cis' in model_weight:
|
| 84 |
+
# model_weight.pop('freqs_cis')
|
| 85 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 86 |
+
gpt_model.eval()
|
| 87 |
+
del checkpoint
|
| 88 |
+
|
| 89 |
+
if args.compile:
|
| 90 |
+
print(f"compiling the model...")
|
| 91 |
+
gpt_model = torch.compile(
|
| 92 |
+
gpt_model,
|
| 93 |
+
mode="reduce-overhead",
|
| 94 |
+
fullgraph=True
|
| 95 |
+
) # requires PyTorch 2.0 (optional)
|
| 96 |
+
else:
|
| 97 |
+
print(f"no model compile")
|
| 98 |
+
|
| 99 |
+
# Create folder to save samples:
|
| 100 |
+
model_string_name = args.gpt_model.replace("/", "-")
|
| 101 |
+
if args.from_fsdp:
|
| 102 |
+
ckpt_string_name = args.gpt_ckpt.split('/')[-2]
|
| 103 |
+
else:
|
| 104 |
+
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
|
| 105 |
+
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-size-{args.image_size_eval}-{args.vq_model}-" \
|
| 106 |
+
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
|
| 107 |
+
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
|
| 108 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 109 |
+
if rank == 0:
|
| 110 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 111 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 112 |
+
dist.barrier()
|
| 113 |
+
|
| 114 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 115 |
+
n = args.per_proc_batch_size
|
| 116 |
+
global_batch_size = n * dist.get_world_size()
|
| 117 |
+
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
|
| 118 |
+
total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size)
|
| 119 |
+
if rank == 0:
|
| 120 |
+
print(f"Total number of images that will be sampled: {total_samples}")
|
| 121 |
+
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
|
| 122 |
+
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
|
| 123 |
+
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
|
| 124 |
+
iterations = int(samples_needed_this_gpu // n)
|
| 125 |
+
pbar = range(iterations)
|
| 126 |
+
pbar = tqdm(pbar) if rank == 0 else pbar
|
| 127 |
+
total = 0
|
| 128 |
+
for _ in pbar:
|
| 129 |
+
# Sample inputs:
|
| 130 |
+
c_indices = torch.randint(0, args.num_classes, (n,), device=device)
|
| 131 |
+
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
|
| 132 |
+
|
| 133 |
+
index_sample = generate(
|
| 134 |
+
gpt_model, c_indices, latent_size ** 2,
|
| 135 |
+
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
|
| 136 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 137 |
+
top_p=args.top_p, sample_logits=True,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 141 |
+
if args.image_size_eval != args.image_size:
|
| 142 |
+
samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
|
| 143 |
+
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 144 |
+
|
| 145 |
+
# Save samples to disk as individual .png files
|
| 146 |
+
for i, sample in enumerate(samples):
|
| 147 |
+
index = i * dist.get_world_size() + rank + total
|
| 148 |
+
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
|
| 149 |
+
total += global_batch_size
|
| 150 |
+
|
| 151 |
+
# Make sure all processes have finished saving their samples before attempting to convert to .npz
|
| 152 |
+
dist.barrier()
|
| 153 |
+
if rank == 0:
|
| 154 |
+
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples)
|
| 155 |
+
print("Done.")
|
| 156 |
+
dist.barrier()
|
| 157 |
+
dist.destroy_process_group()
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
if __name__ == "__main__":
|
| 162 |
+
parser = argparse.ArgumentParser()
|
| 163 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 164 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 165 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 166 |
+
parser.add_argument("--from-fsdp", action='store_true')
|
| 167 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 168 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 169 |
+
parser.add_argument("--compile", action='store_true', default=True)
|
| 170 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 171 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 172 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 173 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 174 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
|
| 175 |
+
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
|
| 176 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 177 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 178 |
+
parser.add_argument("--cfg-scale", type=float, default=1.5)
|
| 179 |
+
parser.add_argument("--cfg-interval", type=float, default=-1)
|
| 180 |
+
parser.add_argument("--sample-dir", type=str, default="samples")
|
| 181 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 182 |
+
parser.add_argument("--num-fid-samples", type=int, default=5000)
|
| 183 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 184 |
+
parser.add_argument("--top-k", type=int, default=0,help="top-k value to sample with")
|
| 185 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 186 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 187 |
+
args = parser.parse_args()
|
| 188 |
+
main(args)
|
autoregressive/sample/sample_t2i_ddp.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
torch.set_float32_matmul_precision('high')
|
| 5 |
+
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
|
| 6 |
+
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import math
|
| 12 |
+
import json
|
| 13 |
+
import argparse
|
| 14 |
+
import pandas as pd
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
from PIL import Image
|
| 17 |
+
|
| 18 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 19 |
+
from language.t5 import T5Embedder
|
| 20 |
+
from autoregressive.models.gpt import GPT_models
|
| 21 |
+
from autoregressive.models.generate import generate
|
| 22 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def main(args):
|
| 27 |
+
# Setup PyTorch:
|
| 28 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 29 |
+
torch.set_grad_enabled(False)
|
| 30 |
+
|
| 31 |
+
# Setup DDP:
|
| 32 |
+
dist.init_process_group("nccl")
|
| 33 |
+
rank = dist.get_rank()
|
| 34 |
+
device = rank % torch.cuda.device_count()
|
| 35 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 36 |
+
torch.manual_seed(seed)
|
| 37 |
+
torch.cuda.set_device(device)
|
| 38 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 39 |
+
|
| 40 |
+
# create and load model
|
| 41 |
+
vq_model = VQ_models[args.vq_model](
|
| 42 |
+
codebook_size=args.codebook_size,
|
| 43 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 44 |
+
vq_model.to(device)
|
| 45 |
+
vq_model.eval()
|
| 46 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 47 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 48 |
+
del checkpoint
|
| 49 |
+
print(f"image tokenizer is loaded")
|
| 50 |
+
|
| 51 |
+
# create and load gpt model
|
| 52 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 53 |
+
latent_size = args.image_size // args.downsample_size
|
| 54 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 55 |
+
block_size=latent_size ** 2,
|
| 56 |
+
cls_token_num=args.cls_token_num,
|
| 57 |
+
model_type=args.gpt_type,
|
| 58 |
+
).to(device=device, dtype=precision)
|
| 59 |
+
|
| 60 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 61 |
+
|
| 62 |
+
if "model" in checkpoint: # ddp
|
| 63 |
+
model_weight = checkpoint["model"]
|
| 64 |
+
elif "module" in checkpoint: # deepspeed
|
| 65 |
+
model_weight = checkpoint["module"]
|
| 66 |
+
elif "state_dict" in checkpoint:
|
| 67 |
+
model_weight = checkpoint["state_dict"]
|
| 68 |
+
else:
|
| 69 |
+
raise Exception("please check model weight")
|
| 70 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 71 |
+
gpt_model.eval()
|
| 72 |
+
del checkpoint
|
| 73 |
+
print(f"gpt model is loaded")
|
| 74 |
+
|
| 75 |
+
if args.compile:
|
| 76 |
+
print(f"compiling the model...")
|
| 77 |
+
gpt_model = torch.compile(
|
| 78 |
+
gpt_model,
|
| 79 |
+
mode="reduce-overhead",
|
| 80 |
+
fullgraph=True
|
| 81 |
+
) # requires PyTorch 2.0 (optional)
|
| 82 |
+
else:
|
| 83 |
+
print(f"no need to compile model in demo")
|
| 84 |
+
|
| 85 |
+
assert os.path.exists(args.t5_path)
|
| 86 |
+
t5_model = T5Embedder(
|
| 87 |
+
device=device,
|
| 88 |
+
local_cache=True,
|
| 89 |
+
cache_dir=args.t5_path,
|
| 90 |
+
dir_or_name=args.t5_model_type,
|
| 91 |
+
torch_dtype=precision,
|
| 92 |
+
model_max_length=args.t5_feature_max_len,
|
| 93 |
+
)
|
| 94 |
+
print(f"t5 model is loaded")
|
| 95 |
+
|
| 96 |
+
# Create folder to save samples:
|
| 97 |
+
model_string_name = args.gpt_model.replace("/", "-")
|
| 98 |
+
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
|
| 99 |
+
prompt_name = args.prompt_csv.split('/')[-1].split('.')[0].lower()
|
| 100 |
+
folder_name = f"{model_string_name}-{ckpt_string_name}-{prompt_name}-size-{args.image_size}-size-{args.image_size}-{args.vq_model}-" \
|
| 101 |
+
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
|
| 102 |
+
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
|
| 103 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 104 |
+
if rank == 0:
|
| 105 |
+
os.makedirs(f"{sample_folder_dir}/images", exist_ok=True)
|
| 106 |
+
print(f"Saving .png samples at {sample_folder_dir}/images")
|
| 107 |
+
dist.barrier()
|
| 108 |
+
|
| 109 |
+
df = pd.read_csv(args.prompt_csv, delimiter='\t')
|
| 110 |
+
prompt_list = df['Prompt'].tolist()
|
| 111 |
+
|
| 112 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 113 |
+
n = args.per_proc_batch_size
|
| 114 |
+
global_batch_size = n * dist.get_world_size()
|
| 115 |
+
num_fid_samples = min(args.num_fid_samples, len(prompt_list))
|
| 116 |
+
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
|
| 117 |
+
total_samples = int(math.ceil(num_fid_samples / global_batch_size) * global_batch_size)
|
| 118 |
+
if rank == 0:
|
| 119 |
+
print(f"Total number of images that will be sampled: {total_samples}")
|
| 120 |
+
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
|
| 121 |
+
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
|
| 122 |
+
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
|
| 123 |
+
iterations = int(samples_needed_this_gpu // n)
|
| 124 |
+
pbar = range(iterations)
|
| 125 |
+
pbar = tqdm(pbar) if rank == 0 else pbar
|
| 126 |
+
total = 0
|
| 127 |
+
for _ in pbar:
|
| 128 |
+
# Select text prompt
|
| 129 |
+
prompt_batch = []
|
| 130 |
+
for i in range(n):
|
| 131 |
+
index = i * dist.get_world_size() + rank + total
|
| 132 |
+
prompt_batch.append(prompt_list[index] if index < len(prompt_list) else "a cute dog")
|
| 133 |
+
|
| 134 |
+
# Sample inputs:
|
| 135 |
+
caption_embs, emb_masks = t5_model.get_text_embeddings(prompt_batch)
|
| 136 |
+
|
| 137 |
+
if not args.no_left_padding:
|
| 138 |
+
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 139 |
+
new_caption_embs = []
|
| 140 |
+
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 141 |
+
valid_num = int(emb_mask.sum().item())
|
| 142 |
+
# prompt_cur = prompt_batch[idx]
|
| 143 |
+
# print(f' prompt {idx} token len: {valid_num} : {prompt_cur}')
|
| 144 |
+
new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]])
|
| 145 |
+
new_caption_embs.append(new_caption_emb)
|
| 146 |
+
new_caption_embs = torch.stack(new_caption_embs)
|
| 147 |
+
|
| 148 |
+
else:
|
| 149 |
+
new_caption_embs, new_emb_masks = caption_embs, emb_masks
|
| 150 |
+
|
| 151 |
+
c_indices = new_caption_embs * new_emb_masks[:,:, None]
|
| 152 |
+
c_emb_masks = new_emb_masks
|
| 153 |
+
|
| 154 |
+
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
|
| 155 |
+
index_sample = generate(
|
| 156 |
+
gpt_model, c_indices, latent_size ** 2,
|
| 157 |
+
c_emb_masks,
|
| 158 |
+
cfg_scale=args.cfg_scale,
|
| 159 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 160 |
+
top_p=args.top_p, sample_logits=True,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 164 |
+
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 165 |
+
|
| 166 |
+
# Save samples to disk as individual .png files
|
| 167 |
+
for i, sample in enumerate(samples):
|
| 168 |
+
index = i * dist.get_world_size() + rank + total
|
| 169 |
+
Image.fromarray(sample).save(f"{sample_folder_dir}/images/{index:06d}.png")
|
| 170 |
+
total += global_batch_size
|
| 171 |
+
|
| 172 |
+
# Make sure all processes have finished saving their samples before attempting to convert to .npz
|
| 173 |
+
dist.barrier()
|
| 174 |
+
if rank == 0:
|
| 175 |
+
# Save infer result in a jsonl file
|
| 176 |
+
json_items = []
|
| 177 |
+
for idx, prompt in enumerate(prompt_list):
|
| 178 |
+
image_path = os.path.join(sample_folder_dir, "images", f"{idx:06d}.png")
|
| 179 |
+
json_items.append({"text": prompt, "image_path": image_path})
|
| 180 |
+
res_jsonl_path = os.path.join(sample_folder_dir, "result.jsonl")
|
| 181 |
+
print(f"Save jsonl to {res_jsonl_path}...")
|
| 182 |
+
with open(res_jsonl_path, "w") as f:
|
| 183 |
+
for item in json_items:
|
| 184 |
+
f.write(json.dumps(item) + "\n")
|
| 185 |
+
|
| 186 |
+
# Save captions to txt
|
| 187 |
+
caption_path = os.path.join(sample_folder_dir, "captions.txt")
|
| 188 |
+
print(f"Save captions to {caption_path}...")
|
| 189 |
+
with open(caption_path, "w") as f:
|
| 190 |
+
for item in prompt_list:
|
| 191 |
+
f.write(f"{item}\n")
|
| 192 |
+
print("Done.")
|
| 193 |
+
|
| 194 |
+
dist.barrier()
|
| 195 |
+
dist.destroy_process_group()
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
parser = argparse.ArgumentParser()
|
| 201 |
+
parser.add_argument("--prompt-csv", type=str, default='evaluations/t2i/PartiPrompts.tsv')
|
| 202 |
+
parser.add_argument("--t5-path", type=str, default='pretrained_models/t5-ckpt')
|
| 203 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 204 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 205 |
+
parser.add_argument("--t5-feature-dim", type=int, default=2048)
|
| 206 |
+
parser.add_argument("--no-left-padding", action='store_true', default=False)
|
| 207 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
|
| 208 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 209 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image")
|
| 210 |
+
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
|
| 211 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 212 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 213 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 214 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 215 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 216 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 217 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=512)
|
| 218 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 219 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 220 |
+
parser.add_argument("--cfg-scale", type=float, default=7.5)
|
| 221 |
+
parser.add_argument("--sample-dir", type=str, default="samples_parti", help="samples_coco or samples_parti")
|
| 222 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 223 |
+
parser.add_argument("--num-fid-samples", type=int, default=30000)
|
| 224 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 225 |
+
parser.add_argument("--top-k", type=int, default=1000, help="top-k value to sample with")
|
| 226 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 227 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 228 |
+
args = parser.parse_args()
|
| 229 |
+
main(args)
|
autoregressive/serve/llm.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# vLLM: https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/llm.py
|
| 3 |
+
from typing import List, Optional, Union
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
| 9 |
+
|
| 10 |
+
from vllm.engine.arg_utils import EngineArgs
|
| 11 |
+
# from vllm.engine.llm_engine import LLMEngine
|
| 12 |
+
from vllm.lora.request import LoRARequest
|
| 13 |
+
from vllm.outputs import RequestOutput
|
| 14 |
+
from vllm.sampling_params import SamplingParams
|
| 15 |
+
from vllm.sequence import MultiModalData
|
| 16 |
+
from vllm.usage.usage_lib import UsageContext
|
| 17 |
+
from vllm.utils import Counter
|
| 18 |
+
|
| 19 |
+
from autoregressive.serve.llm_engine import LLMEngine
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class LLM:
|
| 23 |
+
"""An LLM for generating texts from given prompts and sampling parameters.
|
| 24 |
+
|
| 25 |
+
This class includes a tokenizer, a language model (possibly distributed
|
| 26 |
+
across multiple GPUs), and GPU memory space allocated for intermediate
|
| 27 |
+
states (aka KV cache). Given a batch of prompts and sampling parameters,
|
| 28 |
+
this class generates texts from the model, using an intelligent batching
|
| 29 |
+
mechanism and efficient memory management.
|
| 30 |
+
|
| 31 |
+
NOTE: This class is intended to be used for offline inference. For online
|
| 32 |
+
serving, use the `AsyncLLMEngine` class instead.
|
| 33 |
+
NOTE: For the comprehensive list of arguments, see `EngineArgs`.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
model: The name or path of a HuggingFace Transformers model.
|
| 37 |
+
tokenizer: The name or path of a HuggingFace Transformers tokenizer.
|
| 38 |
+
tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer
|
| 39 |
+
if available, and "slow" will always use the slow tokenizer.
|
| 40 |
+
skip_tokenizer_init: If true, skip initialization of tokenizer and
|
| 41 |
+
detokenizer. Expect valid prompt_token_ids and None for prompt
|
| 42 |
+
from the input.
|
| 43 |
+
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
|
| 44 |
+
downloading the model and tokenizer.
|
| 45 |
+
tensor_parallel_size: The number of GPUs to use for distributed
|
| 46 |
+
execution with tensor parallelism.
|
| 47 |
+
dtype: The data type for the model weights and activations. Currently,
|
| 48 |
+
we support `float32`, `float16`, and `bfloat16`. If `auto`, we use
|
| 49 |
+
the `torch_dtype` attribute specified in the model config file.
|
| 50 |
+
However, if the `torch_dtype` in the config is `float32`, we will
|
| 51 |
+
use `float16` instead.
|
| 52 |
+
quantization: The method used to quantize the model weights. Currently,
|
| 53 |
+
we support "awq", "gptq", "squeezellm", and "fp8" (experimental).
|
| 54 |
+
If None, we first check the `quantization_config` attribute in the
|
| 55 |
+
model config file. If that is None, we assume the model weights are
|
| 56 |
+
not quantized and use `dtype` to determine the data type of
|
| 57 |
+
the weights.
|
| 58 |
+
revision: The specific model version to use. It can be a branch name,
|
| 59 |
+
a tag name, or a commit id.
|
| 60 |
+
tokenizer_revision: The specific tokenizer version to use. It can be a
|
| 61 |
+
branch name, a tag name, or a commit id.
|
| 62 |
+
seed: The seed to initialize the random number generator for sampling.
|
| 63 |
+
gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to
|
| 64 |
+
reserve for the model weights, activations, and KV cache. Higher
|
| 65 |
+
values will increase the KV cache size and thus improve the model's
|
| 66 |
+
throughput. However, if the value is too high, it may cause out-of-
|
| 67 |
+
memory (OOM) errors.
|
| 68 |
+
swap_space: The size (GiB) of CPU memory per GPU to use as swap space.
|
| 69 |
+
This can be used for temporarily storing the states of the requests
|
| 70 |
+
when their `best_of` sampling parameters are larger than 1. If all
|
| 71 |
+
requests will have `best_of=1`, you can safely set this to 0.
|
| 72 |
+
Otherwise, too small values may cause out-of-memory (OOM) errors.
|
| 73 |
+
enforce_eager: Whether to enforce eager execution. If True, we will
|
| 74 |
+
disable CUDA graph and always execute the model in eager mode.
|
| 75 |
+
If False, we will use CUDA graph and eager execution in hybrid.
|
| 76 |
+
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
|
| 77 |
+
When a sequence has context length larger than this, we fall back
|
| 78 |
+
to eager mode.
|
| 79 |
+
disable_custom_all_reduce: See ParallelConfig
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
args: argparse.ArgumentParser,
|
| 85 |
+
model: str,
|
| 86 |
+
tokenizer: Optional[str] = None,
|
| 87 |
+
tokenizer_mode: str = "auto",
|
| 88 |
+
skip_tokenizer_init: bool = False,
|
| 89 |
+
trust_remote_code: bool = False,
|
| 90 |
+
tensor_parallel_size: int = 1,
|
| 91 |
+
dtype: str = "auto",
|
| 92 |
+
quantization: Optional[str] = None,
|
| 93 |
+
revision: Optional[str] = None,
|
| 94 |
+
tokenizer_revision: Optional[str] = None,
|
| 95 |
+
seed: int = 0,
|
| 96 |
+
gpu_memory_utilization: float = 0.9,
|
| 97 |
+
swap_space: int = 4,
|
| 98 |
+
enforce_eager: bool = False,
|
| 99 |
+
max_context_len_to_capture: int = 8192,
|
| 100 |
+
disable_custom_all_reduce: bool = False,
|
| 101 |
+
**kwargs,
|
| 102 |
+
) -> None:
|
| 103 |
+
if "disable_log_stats" not in kwargs:
|
| 104 |
+
kwargs["disable_log_stats"] = True
|
| 105 |
+
engine_args = EngineArgs(
|
| 106 |
+
model=model,
|
| 107 |
+
tokenizer=tokenizer,
|
| 108 |
+
tokenizer_mode=tokenizer_mode,
|
| 109 |
+
skip_tokenizer_init=skip_tokenizer_init,
|
| 110 |
+
trust_remote_code=trust_remote_code,
|
| 111 |
+
tensor_parallel_size=tensor_parallel_size,
|
| 112 |
+
dtype=dtype,
|
| 113 |
+
quantization=quantization,
|
| 114 |
+
revision=revision,
|
| 115 |
+
tokenizer_revision=tokenizer_revision,
|
| 116 |
+
seed=seed,
|
| 117 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 118 |
+
swap_space=swap_space,
|
| 119 |
+
enforce_eager=enforce_eager,
|
| 120 |
+
max_context_len_to_capture=max_context_len_to_capture,
|
| 121 |
+
disable_custom_all_reduce=disable_custom_all_reduce,
|
| 122 |
+
**kwargs,
|
| 123 |
+
)
|
| 124 |
+
self.llm_engine = LLMEngine.from_engine_args(
|
| 125 |
+
engine_args, usage_context=UsageContext.LLM_CLASS, args=args)
|
| 126 |
+
self.request_counter = Counter()
|
| 127 |
+
|
| 128 |
+
def get_tokenizer(
|
| 129 |
+
self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
| 130 |
+
return self.llm_engine.tokenizer.tokenizer
|
| 131 |
+
|
| 132 |
+
def set_tokenizer(
|
| 133 |
+
self,
|
| 134 |
+
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
| 135 |
+
) -> None:
|
| 136 |
+
self.llm_engine.tokenizer.tokenizer = tokenizer
|
| 137 |
+
|
| 138 |
+
def generate(
|
| 139 |
+
self,
|
| 140 |
+
prompts: Optional[Union[str, List[str]]] = None,
|
| 141 |
+
sampling_params: Optional[Union[SamplingParams,
|
| 142 |
+
List[SamplingParams]]] = None,
|
| 143 |
+
prompt_token_ids: Optional[List[List[int]]] = None,
|
| 144 |
+
use_tqdm: bool = True,
|
| 145 |
+
lora_request: Optional[LoRARequest] = None,
|
| 146 |
+
multi_modal_data: Optional[MultiModalData] = None,
|
| 147 |
+
) -> List[RequestOutput]:
|
| 148 |
+
"""Generates the completions for the input prompts.
|
| 149 |
+
|
| 150 |
+
NOTE: This class automatically batches the given prompts, considering
|
| 151 |
+
the memory constraint. For the best performance, put all of your prompts
|
| 152 |
+
into a single list and pass it to this method.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
prompts: A list of prompts to generate completions for.
|
| 156 |
+
sampling_params: The sampling parameters for text generation. If
|
| 157 |
+
None, we use the default sampling parameters.
|
| 158 |
+
When it is a single value, it is applied to every prompt.
|
| 159 |
+
When it is a list, the list must have the same length as the
|
| 160 |
+
prompts and it is paired one by one with the prompt.
|
| 161 |
+
prompt_token_ids: A list of token IDs for the prompts. If None, we
|
| 162 |
+
use the tokenizer to convert the prompts to token IDs.
|
| 163 |
+
use_tqdm: Whether to use tqdm to display the progress bar.
|
| 164 |
+
lora_request: LoRA request to use for generation, if any.
|
| 165 |
+
multi_modal_data: Multi modal data.
|
| 166 |
+
|
| 167 |
+
Returns:
|
| 168 |
+
A list of `RequestOutput` objects containing the generated
|
| 169 |
+
completions in the same order as the input prompts.
|
| 170 |
+
"""
|
| 171 |
+
if prompts is None and prompt_token_ids is None:
|
| 172 |
+
raise ValueError("Either prompts or prompt_token_ids must be "
|
| 173 |
+
"provided.")
|
| 174 |
+
if self.llm_engine.model_config.skip_tokenizer_init \
|
| 175 |
+
and prompts is not None:
|
| 176 |
+
raise ValueError("prompts must be None if skip_tokenizer_init "
|
| 177 |
+
"is True")
|
| 178 |
+
if isinstance(prompts, str):
|
| 179 |
+
# Convert a single prompt to a list.
|
| 180 |
+
prompts = [prompts]
|
| 181 |
+
if (prompts is not None and prompt_token_ids is not None
|
| 182 |
+
and len(prompts) != len(prompt_token_ids)):
|
| 183 |
+
raise ValueError("The lengths of prompts and prompt_token_ids "
|
| 184 |
+
"must be the same.")
|
| 185 |
+
|
| 186 |
+
if prompts is not None:
|
| 187 |
+
num_requests = len(prompts)
|
| 188 |
+
else:
|
| 189 |
+
assert prompt_token_ids is not None
|
| 190 |
+
num_requests = len(prompt_token_ids)
|
| 191 |
+
|
| 192 |
+
if sampling_params is None:
|
| 193 |
+
# Use default sampling params.
|
| 194 |
+
sampling_params = SamplingParams()
|
| 195 |
+
|
| 196 |
+
elif isinstance(sampling_params,
|
| 197 |
+
list) and len(sampling_params) != num_requests:
|
| 198 |
+
raise ValueError("The lengths of prompts and sampling_params "
|
| 199 |
+
"must be the same.")
|
| 200 |
+
if multi_modal_data:
|
| 201 |
+
multi_modal_data.data = multi_modal_data.data.to(torch.float16)
|
| 202 |
+
|
| 203 |
+
# Add requests to the engine.
|
| 204 |
+
for i in range(num_requests):
|
| 205 |
+
prompt = prompts[i] if prompts is not None else None
|
| 206 |
+
token_ids = None if prompt_token_ids is None else prompt_token_ids[i]
|
| 207 |
+
self._add_request(
|
| 208 |
+
prompt,
|
| 209 |
+
sampling_params[i]
|
| 210 |
+
if isinstance(sampling_params, list) else sampling_params,
|
| 211 |
+
token_ids,
|
| 212 |
+
lora_request=lora_request,
|
| 213 |
+
# Get ith image while maintaining the batch dim.
|
| 214 |
+
multi_modal_data=MultiModalData(
|
| 215 |
+
type=multi_modal_data.type,
|
| 216 |
+
data=multi_modal_data.data[i].unsqueeze(0))
|
| 217 |
+
if multi_modal_data else None,
|
| 218 |
+
)
|
| 219 |
+
return self._run_engine(use_tqdm)
|
| 220 |
+
|
| 221 |
+
def _add_request(
|
| 222 |
+
self,
|
| 223 |
+
prompt: Optional[str],
|
| 224 |
+
sampling_params: SamplingParams,
|
| 225 |
+
prompt_token_ids: Optional[List[int]],
|
| 226 |
+
lora_request: Optional[LoRARequest] = None,
|
| 227 |
+
multi_modal_data: Optional[MultiModalData] = None,
|
| 228 |
+
) -> None:
|
| 229 |
+
request_id = str(next(self.request_counter))
|
| 230 |
+
self.llm_engine.add_request(request_id,
|
| 231 |
+
prompt,
|
| 232 |
+
sampling_params,
|
| 233 |
+
prompt_token_ids,
|
| 234 |
+
lora_request=lora_request,
|
| 235 |
+
multi_modal_data=multi_modal_data)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]:
|
| 239 |
+
# Initialize tqdm.
|
| 240 |
+
if use_tqdm:
|
| 241 |
+
num_requests = self.llm_engine.get_num_unfinished_requests()
|
| 242 |
+
pbar = tqdm(
|
| 243 |
+
total=num_requests,
|
| 244 |
+
desc="Processed prompts",
|
| 245 |
+
dynamic_ncols=True,
|
| 246 |
+
postfix=f"Generation Speed: {0:.2f} toks/s",
|
| 247 |
+
)
|
| 248 |
+
# Run the engine.
|
| 249 |
+
outputs: List[RequestOutput] = []
|
| 250 |
+
while self.llm_engine.has_unfinished_requests():
|
| 251 |
+
step_outputs = self.llm_engine.step()
|
| 252 |
+
for output in step_outputs:
|
| 253 |
+
if output.finished:
|
| 254 |
+
outputs.append(output)
|
| 255 |
+
if use_tqdm:
|
| 256 |
+
total_toks += (sum(
|
| 257 |
+
len(stp.token_ids) for stp in output.outputs))
|
| 258 |
+
spd = total_toks / pbar.format_dict["elapsed"]
|
| 259 |
+
pbar.postfix = f"Generation Speed: {spd:.2f} toks/s"
|
| 260 |
+
pbar.update(1)
|
| 261 |
+
if use_tqdm:
|
| 262 |
+
pbar.close()
|
| 263 |
+
# Sort the outputs by request ID.
|
| 264 |
+
# This is necessary because some requests may be finished earlier than
|
| 265 |
+
# its previous requests.
|
| 266 |
+
outputs = sorted(outputs, key=lambda x: int(x.request_id))
|
| 267 |
+
return outputs
|
create_npz.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tqdm import tqdm
|
| 2 |
+
import os
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 9 |
+
"""
|
| 10 |
+
Builds a single .npz file from a folder of .png samples.
|
| 11 |
+
"""
|
| 12 |
+
samples = []
|
| 13 |
+
for file in tqdm(os.listdir(sample_dir), desc="Building .npz file from samples"):
|
| 14 |
+
sample_pil = Image.open(f"{sample_dir}/{file}")
|
| 15 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 16 |
+
samples.append(sample_np)
|
| 17 |
+
samples = np.stack(samples)
|
| 18 |
+
npz_path = f"{sample_dir}.npz"
|
| 19 |
+
np.savez(npz_path, arr_0=samples)
|
| 20 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 21 |
+
return npz_path
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
parser = argparse.ArgumentParser()
|
| 26 |
+
parser.add_argument("--generated-images", type=str, required=True)
|
| 27 |
+
args = parser.parse_args()
|
| 28 |
+
num_fid_samples = 50000
|
| 29 |
+
create_npz_from_sample_folder(args.generated_images, num_fid_samples)
|
| 30 |
+
print("Done.")
|
hfd.sh
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
# Color definitions
|
| 3 |
+
RED='\033[0;31m'; GREEN='\033[0;32m'; YELLOW='\033[1;33m'; NC='\033[0m' # No Color
|
| 4 |
+
|
| 5 |
+
trap 'printf "${YELLOW}\nDownload interrupted. You can resume by re-running the command.\n${NC}"; exit 1' INT
|
| 6 |
+
|
| 7 |
+
display_help() {
|
| 8 |
+
cat << EOF
|
| 9 |
+
Usage:
|
| 10 |
+
hfd <REPO_ID> [--include include_pattern1 include_pattern2 ...] [--exclude exclude_pattern1 exclude_pattern2 ...] [--hf_username username] [--hf_token token] [--tool aria2c|wget] [-x threads] [-j jobs] [--dataset] [--local-dir path] [--revision rev]
|
| 11 |
+
|
| 12 |
+
Description:
|
| 13 |
+
Downloads a model or dataset from Hugging Face using the provided repo ID.
|
| 14 |
+
|
| 15 |
+
Arguments:
|
| 16 |
+
REPO_ID The Hugging Face repo ID (Required)
|
| 17 |
+
Format: 'org_name/repo_name' or legacy format (e.g., gpt2)
|
| 18 |
+
Options:
|
| 19 |
+
include/exclude_pattern The patterns to match against file path, supports wildcard characters.
|
| 20 |
+
e.g., '--exclude *.safetensor *.md', '--include vae/*'.
|
| 21 |
+
--include (Optional) Patterns to include files for downloading (supports multiple patterns).
|
| 22 |
+
--exclude (Optional) Patterns to exclude files from downloading (supports multiple patterns).
|
| 23 |
+
--hf_username (Optional) Hugging Face username for authentication (not email).
|
| 24 |
+
--hf_token (Optional) Hugging Face token for authentication.
|
| 25 |
+
--tool (Optional) Download tool to use: aria2c (default) or wget.
|
| 26 |
+
-x (Optional) Number of download threads for aria2c (default: 4).
|
| 27 |
+
-j (Optional) Number of concurrent downloads for aria2c (default: 5).
|
| 28 |
+
--dataset (Optional) Flag to indicate downloading a dataset.
|
| 29 |
+
--local-dir (Optional) Directory path to store the downloaded data.
|
| 30 |
+
Defaults to the current directory with a subdirectory named 'repo_name'
|
| 31 |
+
if REPO_ID is is composed of 'org_name/repo_name'.
|
| 32 |
+
--revision (Optional) Model/Dataset revision to download (default: main).
|
| 33 |
+
|
| 34 |
+
Example:
|
| 35 |
+
hfd gpt2
|
| 36 |
+
hfd bigscience/bloom-560m --exclude *.safetensors
|
| 37 |
+
hfd meta-llama/Llama-2-7b --hf_username myuser --hf_token mytoken -x 4
|
| 38 |
+
hfd lavita/medical-qa-shared-task-v1-toy --dataset
|
| 39 |
+
hfd bartowski/Phi-3.5-mini-instruct-exl2 --revision 5_0
|
| 40 |
+
EOF
|
| 41 |
+
exit 1
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
[[ -z "$1" || "$1" =~ ^-h || "$1" =~ ^--help ]] && display_help
|
| 45 |
+
|
| 46 |
+
REPO_ID=$1
|
| 47 |
+
shift
|
| 48 |
+
|
| 49 |
+
# Default values
|
| 50 |
+
TOOL="aria2c"
|
| 51 |
+
THREADS=4
|
| 52 |
+
CONCURRENT=5
|
| 53 |
+
HF_ENDPOINT=${HF_ENDPOINT:-"https://huggingface.co"}
|
| 54 |
+
INCLUDE_PATTERNS=()
|
| 55 |
+
EXCLUDE_PATTERNS=()
|
| 56 |
+
REVISION="main"
|
| 57 |
+
|
| 58 |
+
validate_number() {
|
| 59 |
+
[[ "$2" =~ ^[1-9][0-9]*$ && "$2" -le "$3" ]] || { printf "${RED}[Error] $1 must be 1-$3${NC}\n"; exit 1; }
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
# Argument parsing
|
| 63 |
+
while [[ $# -gt 0 ]]; do
|
| 64 |
+
case $1 in
|
| 65 |
+
--include) shift; while [[ $# -gt 0 && ! ($1 =~ ^--) && ! ($1 =~ ^-[^-]) ]]; do INCLUDE_PATTERNS+=("$1"); shift; done ;;
|
| 66 |
+
--exclude) shift; while [[ $# -gt 0 && ! ($1 =~ ^--) && ! ($1 =~ ^-[^-]) ]]; do EXCLUDE_PATTERNS+=("$1"); shift; done ;;
|
| 67 |
+
--hf_username) HF_USERNAME="$2"; shift 2 ;;
|
| 68 |
+
--hf_token) HF_TOKEN="$2"; shift 2 ;;
|
| 69 |
+
--tool)
|
| 70 |
+
case $2 in
|
| 71 |
+
aria2c|wget)
|
| 72 |
+
TOOL="$2"
|
| 73 |
+
;;
|
| 74 |
+
*)
|
| 75 |
+
printf "%b[Error] Invalid tool. Use 'aria2c' or 'wget'.%b\n" "$RED" "$NC"
|
| 76 |
+
exit 1
|
| 77 |
+
;;
|
| 78 |
+
esac
|
| 79 |
+
shift 2
|
| 80 |
+
;;
|
| 81 |
+
-x) validate_number "threads (-x)" "$2" 10; THREADS="$2"; shift 2 ;;
|
| 82 |
+
-j) validate_number "concurrent downloads (-j)" "$2" 10; CONCURRENT="$2"; shift 2 ;;
|
| 83 |
+
--dataset) DATASET=1; shift ;;
|
| 84 |
+
--local-dir) LOCAL_DIR="$2"; shift 2 ;;
|
| 85 |
+
--revision) REVISION="$2"; shift 2 ;;
|
| 86 |
+
*) display_help ;;
|
| 87 |
+
esac
|
| 88 |
+
done
|
| 89 |
+
|
| 90 |
+
# Generate current command string
|
| 91 |
+
generate_command_string() {
|
| 92 |
+
local cmd_string="REPO_ID=$REPO_ID"
|
| 93 |
+
cmd_string+=" TOOL=$TOOL"
|
| 94 |
+
cmd_string+=" INCLUDE_PATTERNS=${INCLUDE_PATTERNS[*]}"
|
| 95 |
+
cmd_string+=" EXCLUDE_PATTERNS=${EXCLUDE_PATTERNS[*]}"
|
| 96 |
+
cmd_string+=" DATASET=${DATASET:-0}"
|
| 97 |
+
cmd_string+=" HF_USERNAME=${HF_USERNAME:-}"
|
| 98 |
+
cmd_string+=" HF_TOKEN=${HF_TOKEN:-}"
|
| 99 |
+
cmd_string+=" HF_TOKEN=${HF_ENDPOINT:-}"
|
| 100 |
+
cmd_string+=" REVISION=$REVISION"
|
| 101 |
+
echo "$cmd_string"
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Check if aria2, wget, curl are installed
|
| 105 |
+
check_command() {
|
| 106 |
+
if ! command -v $1 &>/dev/null; then
|
| 107 |
+
printf "%b%s is not installed. Please install it first.%b\n" "$RED" "$1" "$NC"
|
| 108 |
+
exit 1
|
| 109 |
+
fi
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
check_command curl; check_command "$TOOL"
|
| 113 |
+
|
| 114 |
+
LOCAL_DIR="${LOCAL_DIR:-${REPO_ID#*/}}"
|
| 115 |
+
mkdir -p "$LOCAL_DIR/.hfd"
|
| 116 |
+
|
| 117 |
+
if [[ "$DATASET" == 1 ]]; then
|
| 118 |
+
METADATA_API_PATH="datasets/$REPO_ID"
|
| 119 |
+
DOWNLOAD_API_PATH="datasets/$REPO_ID"
|
| 120 |
+
CUT_DIRS=5
|
| 121 |
+
else
|
| 122 |
+
METADATA_API_PATH="models/$REPO_ID"
|
| 123 |
+
DOWNLOAD_API_PATH="$REPO_ID"
|
| 124 |
+
CUT_DIRS=4
|
| 125 |
+
fi
|
| 126 |
+
|
| 127 |
+
# Modify API URL, construct based on revision
|
| 128 |
+
if [[ "$REVISION" != "main" ]]; then
|
| 129 |
+
METADATA_API_PATH="$METADATA_API_PATH/revision/$REVISION"
|
| 130 |
+
fi
|
| 131 |
+
API_URL="$HF_ENDPOINT/api/$METADATA_API_PATH"
|
| 132 |
+
|
| 133 |
+
METADATA_FILE="$LOCAL_DIR/.hfd/repo_metadata.json"
|
| 134 |
+
|
| 135 |
+
# Fetch and save metadata
|
| 136 |
+
fetch_and_save_metadata() {
|
| 137 |
+
status_code=$(curl -L -s -w "%{http_code}" -o "$METADATA_FILE" ${HF_TOKEN:+-H "Authorization: Bearer $HF_TOKEN"} "$API_URL")
|
| 138 |
+
RESPONSE=$(cat "$METADATA_FILE")
|
| 139 |
+
if [ "$status_code" -eq 200 ]; then
|
| 140 |
+
printf "%s\n" "$RESPONSE"
|
| 141 |
+
else
|
| 142 |
+
printf "%b[Error] Failed to fetch metadata from $API_URL. HTTP status code: $status_code.%b\n$RESPONSE\n" "${RED}" "${NC}" >&2
|
| 143 |
+
rm $METADATA_FILE
|
| 144 |
+
exit 1
|
| 145 |
+
fi
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
check_authentication() {
|
| 149 |
+
local response="$1"
|
| 150 |
+
if command -v jq &>/dev/null; then
|
| 151 |
+
local gated
|
| 152 |
+
gated=$(echo "$response" | jq -r '.gated // false')
|
| 153 |
+
if [[ "$gated" != "false" && ( -z "$HF_TOKEN" || -z "$HF_USERNAME" ) ]]; then
|
| 154 |
+
printf "${RED}The repository requires authentication, but --hf_username and --hf_token is not passed. Please get token from https://huggingface.co/settings/tokens.\nExiting.\n${NC}"
|
| 155 |
+
exit 1
|
| 156 |
+
fi
|
| 157 |
+
else
|
| 158 |
+
if echo "$response" | grep -q '"gated":[^f]' && [[ -z "$HF_TOKEN" || -z "$HF_USERNAME" ]]; then
|
| 159 |
+
printf "${RED}The repository requires authentication, but --hf_username and --hf_token is not passed. Please get token from https://huggingface.co/settings/tokens.\nExiting.\n${NC}"
|
| 160 |
+
exit 1
|
| 161 |
+
fi
|
| 162 |
+
fi
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
if [[ ! -f "$METADATA_FILE" ]]; then
|
| 166 |
+
printf "%bFetching repo metadata...%b\n" "$YELLOW" "$NC"
|
| 167 |
+
RESPONSE=$(fetch_and_save_metadata) || exit 1
|
| 168 |
+
check_authentication "$RESPONSE"
|
| 169 |
+
else
|
| 170 |
+
printf "%bUsing cached metadata: $METADATA_FILE%b\n" "$GREEN" "$NC"
|
| 171 |
+
RESPONSE=$(cat "$METADATA_FILE")
|
| 172 |
+
check_authentication "$RESPONSE"
|
| 173 |
+
fi
|
| 174 |
+
|
| 175 |
+
should_regenerate_filelist() {
|
| 176 |
+
local command_file="$LOCAL_DIR/.hfd/last_download_command"
|
| 177 |
+
local current_command=$(generate_command_string)
|
| 178 |
+
|
| 179 |
+
# If file list doesn't exist, regenerate
|
| 180 |
+
if [[ ! -f "$LOCAL_DIR/$fileslist_file" ]]; then
|
| 181 |
+
echo "$current_command" > "$command_file"
|
| 182 |
+
return 0
|
| 183 |
+
fi
|
| 184 |
+
|
| 185 |
+
# If command file doesn't exist, regenerate
|
| 186 |
+
if [[ ! -f "$command_file" ]]; then
|
| 187 |
+
echo "$current_command" > "$command_file"
|
| 188 |
+
return 0
|
| 189 |
+
fi
|
| 190 |
+
|
| 191 |
+
# Compare current command with saved command
|
| 192 |
+
local saved_command=$(cat "$command_file")
|
| 193 |
+
if [[ "$current_command" != "$saved_command" ]]; then
|
| 194 |
+
echo "$current_command" > "$command_file"
|
| 195 |
+
return 0
|
| 196 |
+
fi
|
| 197 |
+
|
| 198 |
+
return 1
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
fileslist_file=".hfd/${TOOL}_urls.txt"
|
| 202 |
+
|
| 203 |
+
if should_regenerate_filelist; then
|
| 204 |
+
# Remove existing file list if it exists
|
| 205 |
+
[[ -f "$LOCAL_DIR/$fileslist_file" ]] && rm "$LOCAL_DIR/$fileslist_file"
|
| 206 |
+
|
| 207 |
+
printf "%bGenerating file list...%b\n" "$YELLOW" "$NC"
|
| 208 |
+
|
| 209 |
+
# Convert include and exclude patterns to regex
|
| 210 |
+
INCLUDE_REGEX=""
|
| 211 |
+
EXCLUDE_REGEX=""
|
| 212 |
+
if ((${#INCLUDE_PATTERNS[@]})); then
|
| 213 |
+
INCLUDE_REGEX=$(printf '%s\n' "${INCLUDE_PATTERNS[@]}" | sed 's/\./\\./g; s/\*/.*/g' | paste -sd '|' -)
|
| 214 |
+
fi
|
| 215 |
+
if ((${#EXCLUDE_PATTERNS[@]})); then
|
| 216 |
+
EXCLUDE_REGEX=$(printf '%s\n' "${EXCLUDE_PATTERNS[@]}" | sed 's/\./\\./g; s/\*/.*/g' | paste -sd '|' -)
|
| 217 |
+
fi
|
| 218 |
+
|
| 219 |
+
# Check if jq is available
|
| 220 |
+
if command -v jq &>/dev/null; then
|
| 221 |
+
process_with_jq() {
|
| 222 |
+
if [[ "$TOOL" == "aria2c" ]]; then
|
| 223 |
+
printf "%s" "$RESPONSE" | jq -r \
|
| 224 |
+
--arg endpoint "$HF_ENDPOINT" \
|
| 225 |
+
--arg repo_id "$DOWNLOAD_API_PATH" \
|
| 226 |
+
--arg token "$HF_TOKEN" \
|
| 227 |
+
--arg include_regex "$INCLUDE_REGEX" \
|
| 228 |
+
--arg exclude_regex "$EXCLUDE_REGEX" \
|
| 229 |
+
--arg revision "$REVISION" \
|
| 230 |
+
'
|
| 231 |
+
.siblings[]
|
| 232 |
+
| select(
|
| 233 |
+
.rfilename != null
|
| 234 |
+
and ($include_regex == "" or (.rfilename | test($include_regex)))
|
| 235 |
+
and ($exclude_regex == "" or (.rfilename | test($exclude_regex) | not))
|
| 236 |
+
)
|
| 237 |
+
| [
|
| 238 |
+
($endpoint + "/" + $repo_id + "/resolve/" + $revision + "/" + .rfilename),
|
| 239 |
+
" dir=" + (.rfilename | split("/")[:-1] | join("/")),
|
| 240 |
+
" out=" + (.rfilename | split("/")[-1]),
|
| 241 |
+
if $token != "" then " header=Authorization: Bearer " + $token else empty end,
|
| 242 |
+
""
|
| 243 |
+
]
|
| 244 |
+
| join("\n")
|
| 245 |
+
'
|
| 246 |
+
else
|
| 247 |
+
printf "%s" "$RESPONSE" | jq -r \
|
| 248 |
+
--arg endpoint "$HF_ENDPOINT" \
|
| 249 |
+
--arg repo_id "$DOWNLOAD_API_PATH" \
|
| 250 |
+
--arg include_regex "$INCLUDE_REGEX" \
|
| 251 |
+
--arg exclude_regex "$EXCLUDE_REGEX" \
|
| 252 |
+
--arg revision "$REVISION" \
|
| 253 |
+
'
|
| 254 |
+
.siblings[]
|
| 255 |
+
| select(
|
| 256 |
+
.rfilename != null
|
| 257 |
+
and ($include_regex == "" or (.rfilename | test($include_regex)))
|
| 258 |
+
and ($exclude_regex == "" or (.rfilename | test($exclude_regex) | not))
|
| 259 |
+
)
|
| 260 |
+
| ($endpoint + "/" + $repo_id + "/resolve/" + $revision + "/" + .rfilename)
|
| 261 |
+
'
|
| 262 |
+
fi
|
| 263 |
+
}
|
| 264 |
+
result=$(process_with_jq)
|
| 265 |
+
printf "%s\n" "$result" > "$LOCAL_DIR/$fileslist_file"
|
| 266 |
+
else
|
| 267 |
+
printf "%b[Warning] jq not installed, using grep/awk for metadata json parsing (slower). Consider installing jq for better parsing performance.%b\n" "$YELLOW" "$NC"
|
| 268 |
+
process_with_grep_awk() {
|
| 269 |
+
local include_pattern=""
|
| 270 |
+
local exclude_pattern=""
|
| 271 |
+
local output=""
|
| 272 |
+
|
| 273 |
+
if ((${#INCLUDE_PATTERNS[@]})); then
|
| 274 |
+
include_pattern=$(printf '%s\n' "${INCLUDE_PATTERNS[@]}" | sed 's/\./\\./g; s/\*/.*/g' | paste -sd '|' -)
|
| 275 |
+
fi
|
| 276 |
+
if ((${#EXCLUDE_PATTERNS[@]})); then
|
| 277 |
+
exclude_pattern=$(printf '%s\n' "${EXCLUDE_PATTERNS[@]}" | sed 's/\./\\./g; s/\*/.*/g' | paste -sd '|' -)
|
| 278 |
+
fi
|
| 279 |
+
|
| 280 |
+
local files=$(printf '%s' "$RESPONSE" | grep -o '"rfilename":"[^"]*"' | awk -F'"' '{print $4}')
|
| 281 |
+
|
| 282 |
+
if [[ -n "$include_pattern" ]]; then
|
| 283 |
+
files=$(printf '%s\n' "$files" | grep -E "$include_pattern")
|
| 284 |
+
fi
|
| 285 |
+
if [[ -n "$exclude_pattern" ]]; then
|
| 286 |
+
files=$(printf '%s\n' "$files" | grep -vE "$exclude_pattern")
|
| 287 |
+
fi
|
| 288 |
+
|
| 289 |
+
while IFS= read -r file; do
|
| 290 |
+
if [[ -n "$file" ]]; then
|
| 291 |
+
if [[ "$TOOL" == "aria2c" ]]; then
|
| 292 |
+
output+="$HF_ENDPOINT/$DOWNLOAD_API_PATH/resolve/$REVISION/$file"$'\n'
|
| 293 |
+
output+=" dir=$(dirname "$file")"$'\n'
|
| 294 |
+
output+=" out=$(basename "$file")"$'\n'
|
| 295 |
+
[[ -n "$HF_TOKEN" ]] && output+=" header=Authorization: Bearer $HF_TOKEN"$'\n'
|
| 296 |
+
output+=$'\n'
|
| 297 |
+
else
|
| 298 |
+
output+="$HF_ENDPOINT/$DOWNLOAD_API_PATH/resolve/$REVISION/$file"$'\n'
|
| 299 |
+
fi
|
| 300 |
+
fi
|
| 301 |
+
done <<< "$files"
|
| 302 |
+
|
| 303 |
+
printf '%s' "$output"
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
result=$(process_with_grep_awk)
|
| 307 |
+
printf "%s\n" "$result" > "$LOCAL_DIR/$fileslist_file"
|
| 308 |
+
fi
|
| 309 |
+
else
|
| 310 |
+
printf "%bResume from file list: $LOCAL_DIR/$fileslist_file%b\n" "$GREEN" "$NC"
|
| 311 |
+
fi
|
| 312 |
+
|
| 313 |
+
# Perform download
|
| 314 |
+
printf "${YELLOW}Starting download with $TOOL to $LOCAL_DIR...\n${NC}"
|
| 315 |
+
|
| 316 |
+
cd "$LOCAL_DIR"
|
| 317 |
+
if [[ "$TOOL" == "aria2c" ]]; then
|
| 318 |
+
aria2c --console-log-level=error --file-allocation=none -x "$THREADS" -j "$CONCURRENT" -s "$THREADS" -k 1M -c -i "$fileslist_file" --save-session="$fileslist_file"
|
| 319 |
+
elif [[ "$TOOL" == "wget" ]]; then
|
| 320 |
+
wget -x -nH --cut-dirs="$CUT_DIRS" ${HF_TOKEN:+--header="Authorization: Bearer $HF_TOKEN"} --input-file="$fileslist_file" --continue
|
| 321 |
+
fi
|
| 322 |
+
|
| 323 |
+
if [[ $? -eq 0 ]]; then
|
| 324 |
+
printf "${GREEN}Download completed successfully. Repo directory: $PWD\n${NC}"
|
| 325 |
+
else
|
| 326 |
+
printf "${RED}Download encountered errors.\n${NC}"
|
| 327 |
+
exit 1
|
| 328 |
+
fi
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torchvision==0.16.2
|
| 2 |
+
opencv-python==4.9.0.80
|
| 3 |
+
matplotlib==3.9.0
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
einops
|
| 6 |
+
datasets
|
| 7 |
+
tensorflow==2.16.1
|
| 8 |
+
scikit-learn
|
| 9 |
+
scikit-image
|
| 10 |
+
ftfy
|
| 11 |
+
bs4
|
| 12 |
+
timm
|
| 13 |
+
torchmetrics
|
| 14 |
+
accelerate
|
| 15 |
+
controlnet_aux
|
| 16 |
+
ftfy
|
| 17 |
+
clean-fid
|
| 18 |
+
safetensors
|
| 19 |
+
transformers
|
| 20 |
+
tiktoken
|
| 21 |
+
sentencepiece
|
| 22 |
+
basicsr
|
scripts/tokenizer/train_vq_finetune.sh
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !/bin/bash
|
| 2 |
+
set -x
|
| 3 |
+
|
| 4 |
+
torchrun \
|
| 5 |
+
--nnodes=1 --nproc_per_node=4 --node_rank=0 \
|
| 6 |
+
--master_addr=127.0.0.1 --master_port=12345 \
|
| 7 |
+
tokenizer/tokenizer_image/vq_train.py \
|
| 8 |
+
--finetune \
|
| 9 |
+
--disc-start 0 \
|
| 10 |
+
--vq-ckpt vq_ds16_c2i.pt \
|
| 11 |
+
--dataset imagenet_code \
|
| 12 |
+
--cloud-save-path output/cloud_disk \
|
| 13 |
+
"$@"
|
| 14 |
+
|
scripts/tokenizer/train_vq_finetune_continue.sh
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !/bin/bash
|
| 2 |
+
set -x
|
| 3 |
+
|
| 4 |
+
torchrun \
|
| 5 |
+
--nnodes=$nnodes --nproc_per_node=$nproc_per_node --node_rank=$node_rank \
|
| 6 |
+
--master_addr=$master_addr --master_port=$master_port \
|
| 7 |
+
tokenizer/tokenizer_image/vq_train.py \
|
| 8 |
+
--disc-start 0 \
|
| 9 |
+
--dataset t2i_image \
|
| 10 |
+
--data-path /path/to/high_aesthetic_10M \
|
| 11 |
+
--data-face-path /path/to/face_2M \
|
| 12 |
+
--cloud-save-path /path/to/cloud_disk \
|
| 13 |
+
"$@"
|
| 14 |
+
|
| 15 |
+
# --vq-ckpt xxx.pt
|
scripts/tokenizer/val.sh
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !/bin/bash
|
| 2 |
+
set -x
|
| 3 |
+
|
| 4 |
+
torchrun \
|
| 5 |
+
--nnodes=1 --nproc_per_node=4 --node_rank=0 \
|
| 6 |
+
--master_port=12343 \
|
| 7 |
+
tokenizer/validation/val_ddp.py \
|
| 8 |
+
"$@"
|
test_dataset_t2icontrol.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
from torch.utils.data import DataLoader
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from dataset.t2i_control import T2IControlCode
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_args():
|
| 15 |
+
parser = argparse.ArgumentParser()
|
| 16 |
+
parser.add_argument('--code_path', type=str, required=True, help='根目录,包含 code/control/image/caption_emb 等文件夹')
|
| 17 |
+
parser.add_argument('--code_path2', type=str, default=None, help='第二组数据路径 (可选)')
|
| 18 |
+
parser.add_argument('--image_size', type=int, default=512)
|
| 19 |
+
parser.add_argument('--downsample_size', type=int, default=8)
|
| 20 |
+
parser.add_argument('--condition_type', type=str, default='seg', choices=['seg', 'depth', 'canny', 'hed', 'lineart'], help='控制类型')
|
| 21 |
+
parser.add_argument('--get_image', action='store_true', help='是否返回 image')
|
| 22 |
+
parser.add_argument('--get_prompt', action='store_true', help='是否返回 prompt')
|
| 23 |
+
parser.add_argument('--get_label', action='store_true', help='是否返回 label')
|
| 24 |
+
parser.add_argument('--max_show', type=int, default=5, help='最多显示多少条样本')
|
| 25 |
+
return parser.parse_args()
|
| 26 |
+
|
| 27 |
+
def main():
|
| 28 |
+
args = get_args()
|
| 29 |
+
|
| 30 |
+
dataset = T2IControlCode(args)
|
| 31 |
+
print(f"\n📦 数据集大小: {len(dataset)}")
|
| 32 |
+
|
| 33 |
+
loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=2, collate_fn=dataset.collate_fn)
|
| 34 |
+
|
| 35 |
+
for i, batch in enumerate(tqdm(loader)):
|
| 36 |
+
print(f"\n🟡 Sample #{i}")
|
| 37 |
+
print(f" - code shape: {batch['code'].shape}")
|
| 38 |
+
print(f" - control shape: {batch['control'].shape}")
|
| 39 |
+
print(f" - caption_emb shape: {batch['caption_emb'].shape}")
|
| 40 |
+
print(f" - attention mask shape: {batch['attn_mask'].shape}")
|
| 41 |
+
print(f" - valid: {batch['valid'].item()}")
|
| 42 |
+
|
| 43 |
+
if args.get_image:
|
| 44 |
+
print(f" - image shape: {batch['image'].shape}")
|
| 45 |
+
if args.get_prompt:
|
| 46 |
+
print(f" - prompt: {batch['prompt']}")
|
| 47 |
+
if args.get_label:
|
| 48 |
+
print(f" - label shape: {batch['label'].shape}")
|
| 49 |
+
|
| 50 |
+
if i + 1 >= args.max_show:
|
| 51 |
+
break
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
main()
|
| 55 |
+
|
tokenizer/consistencydecoder/README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Consistency Decoder from OpenAI
|
| 2 |
+
|
| 3 |
+
### install
|
| 4 |
+
```
|
| 5 |
+
pip install diffusers
|
| 6 |
+
pip install accelerate
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
### demo
|
| 10 |
+
```
|
| 11 |
+
cd ${THIS_REPO_ROOT}
|
| 12 |
+
python3 tokenizer/consistencydecoder/cd_demo.py
|
| 13 |
+
```
|
| 14 |
+
|
tokenizer/consistencydecoder/reconstruction_cd_ddp.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 7 |
+
from torchvision.datasets import ImageFolder
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
import itertools
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import numpy as np
|
| 14 |
+
import argparse
|
| 15 |
+
import random
|
| 16 |
+
|
| 17 |
+
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
|
| 18 |
+
from skimage.metrics import structural_similarity as ssim_loss
|
| 19 |
+
from diffusers.models import ConsistencyDecoderVAE
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SingleFolderDataset(Dataset):
|
| 23 |
+
def __init__(self, directory, transform=None):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.directory = directory
|
| 26 |
+
self.transform = transform
|
| 27 |
+
self.image_paths = [os.path.join(directory, file_name) for file_name in os.listdir(directory)
|
| 28 |
+
if os.path.isfile(os.path.join(directory, file_name))]
|
| 29 |
+
|
| 30 |
+
def __len__(self):
|
| 31 |
+
return len(self.image_paths)
|
| 32 |
+
|
| 33 |
+
def __getitem__(self, idx):
|
| 34 |
+
image_path = self.image_paths[idx]
|
| 35 |
+
image = Image.open(image_path).convert('RGB')
|
| 36 |
+
if self.transform:
|
| 37 |
+
image = self.transform(image)
|
| 38 |
+
return image, torch.tensor(0)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 42 |
+
"""
|
| 43 |
+
Builds a single .npz file from a folder of .png samples.
|
| 44 |
+
"""
|
| 45 |
+
samples = []
|
| 46 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 47 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 48 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 49 |
+
samples.append(sample_np)
|
| 50 |
+
|
| 51 |
+
random.shuffle(samples) # This is very important for IS(Inception Score) !!!
|
| 52 |
+
samples = np.stack(samples)
|
| 53 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 54 |
+
npz_path = f"{sample_dir}.npz"
|
| 55 |
+
np.savez(npz_path, arr_0=samples)
|
| 56 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 57 |
+
return npz_path
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def center_crop_arr(pil_image, image_size):
|
| 61 |
+
"""
|
| 62 |
+
Center cropping implementation from ADM.
|
| 63 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
| 64 |
+
"""
|
| 65 |
+
while min(*pil_image.size) >= 2 * image_size:
|
| 66 |
+
pil_image = pil_image.resize(
|
| 67 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
scale = image_size / min(*pil_image.size)
|
| 71 |
+
pil_image = pil_image.resize(
|
| 72 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
arr = np.array(pil_image)
|
| 76 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
| 77 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
| 78 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def main(args):
|
| 82 |
+
# Setup PyTorch:
|
| 83 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 84 |
+
torch.set_grad_enabled(False)
|
| 85 |
+
|
| 86 |
+
# Setup env
|
| 87 |
+
dist.init_process_group("nccl")
|
| 88 |
+
rank = dist.get_rank()
|
| 89 |
+
device = rank % torch.cuda.device_count()
|
| 90 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 91 |
+
torch.manual_seed(seed)
|
| 92 |
+
torch.cuda.set_device(device)
|
| 93 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 94 |
+
|
| 95 |
+
# create and load model
|
| 96 |
+
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16).to("cuda:{}".format(device))
|
| 97 |
+
|
| 98 |
+
# Create folder to save samples:
|
| 99 |
+
folder_name = f"openai-consistencydecoder-{args.dataset}-size-{args.image_size}-seed-{args.global_seed}"
|
| 100 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 101 |
+
if rank == 0:
|
| 102 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 103 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 104 |
+
dist.barrier()
|
| 105 |
+
|
| 106 |
+
# Setup data:
|
| 107 |
+
transform = transforms.Compose([
|
| 108 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 109 |
+
transforms.ToTensor(),
|
| 110 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 111 |
+
])
|
| 112 |
+
if args.dataset == 'imagenet':
|
| 113 |
+
dataset = ImageFolder(args.data_path, transform=transform)
|
| 114 |
+
num_fid_samples = 50000
|
| 115 |
+
elif args.dataset == 'coco':
|
| 116 |
+
dataset = SingleFolderDataset(args.data_path, transform=transform)
|
| 117 |
+
num_fid_samples = 5000
|
| 118 |
+
else:
|
| 119 |
+
raise Exception("please check dataset")
|
| 120 |
+
sampler = DistributedSampler(
|
| 121 |
+
dataset,
|
| 122 |
+
num_replicas=dist.get_world_size(),
|
| 123 |
+
rank=rank,
|
| 124 |
+
shuffle=False,
|
| 125 |
+
seed=args.global_seed
|
| 126 |
+
)
|
| 127 |
+
loader = DataLoader(
|
| 128 |
+
dataset,
|
| 129 |
+
batch_size=args.per_proc_batch_size,
|
| 130 |
+
shuffle=False,
|
| 131 |
+
sampler=sampler,
|
| 132 |
+
num_workers=args.num_workers,
|
| 133 |
+
pin_memory=True,
|
| 134 |
+
drop_last=False
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 138 |
+
n = args.per_proc_batch_size
|
| 139 |
+
global_batch_size = n * dist.get_world_size()
|
| 140 |
+
psnr_val_rgb = []
|
| 141 |
+
ssim_val_rgb = []
|
| 142 |
+
|
| 143 |
+
loader = tqdm(loader) if rank == 0 else loader
|
| 144 |
+
total = 0
|
| 145 |
+
for x, _ in loader:
|
| 146 |
+
rgb_gts = x
|
| 147 |
+
rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
|
| 148 |
+
x = x.half().to("cuda:{}".format(device))
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
# Map input images to latent space + normalize latents:
|
| 151 |
+
latent = vae.encode(x).latent_dist.sample().mul_(0.18215)
|
| 152 |
+
# reconstruct:
|
| 153 |
+
samples = vae.decode(latent / 0.18215).sample # output value is between [-1, 1]
|
| 154 |
+
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 155 |
+
|
| 156 |
+
# Save samples to disk as individual .png files
|
| 157 |
+
for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
|
| 158 |
+
index = i * dist.get_world_size() + rank + total
|
| 159 |
+
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
|
| 160 |
+
# metric
|
| 161 |
+
rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
|
| 162 |
+
psnr = psnr_loss(rgb_restored, rgb_gt)
|
| 163 |
+
ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
|
| 164 |
+
psnr_val_rgb.append(psnr)
|
| 165 |
+
ssim_val_rgb.append(ssim)
|
| 166 |
+
total += global_batch_size
|
| 167 |
+
|
| 168 |
+
# ------------------------------------
|
| 169 |
+
# Summary
|
| 170 |
+
# ------------------------------------
|
| 171 |
+
# Make sure all processes have finished saving their samples
|
| 172 |
+
dist.barrier()
|
| 173 |
+
world_size = dist.get_world_size()
|
| 174 |
+
gather_psnr_val = [None for _ in range(world_size)]
|
| 175 |
+
gather_ssim_val = [None for _ in range(world_size)]
|
| 176 |
+
dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
|
| 177 |
+
dist.all_gather_object(gather_ssim_val, ssim_val_rgb)
|
| 178 |
+
|
| 179 |
+
if rank == 0:
|
| 180 |
+
gather_psnr_val = list(itertools.chain(*gather_psnr_val))
|
| 181 |
+
gather_ssim_val = list(itertools.chain(*gather_ssim_val))
|
| 182 |
+
psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
|
| 183 |
+
ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
|
| 184 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
|
| 185 |
+
|
| 186 |
+
result_file = f"{sample_folder_dir}_results.txt"
|
| 187 |
+
print("writing results to {}".format(result_file))
|
| 188 |
+
with open(result_file, 'w') as f:
|
| 189 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)
|
| 190 |
+
|
| 191 |
+
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
|
| 192 |
+
print("Done.")
|
| 193 |
+
|
| 194 |
+
dist.barrier()
|
| 195 |
+
dist.destroy_process_group()
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
parser = argparse.ArgumentParser()
|
| 200 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 201 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco'], default='imagenet')
|
| 202 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
| 203 |
+
parser.add_argument("--sample-dir", type=str, default="reconstructions")
|
| 204 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 205 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 206 |
+
parser.add_argument("--num-workers", type=int, default=4)
|
| 207 |
+
args = parser.parse_args()
|
| 208 |
+
main(args)
|
tokenizer/tokenizer_image/discriminator.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# taming-transformers: https://github.com/CompVis/taming-transformers
|
| 3 |
+
# stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py
|
| 4 |
+
# maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py
|
| 5 |
+
import functools
|
| 6 |
+
import math
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
try:
|
| 10 |
+
from kornia.filters import filter2d
|
| 11 |
+
except:
|
| 12 |
+
pass
|
| 13 |
+
|
| 14 |
+
#################################################################################
|
| 15 |
+
# PatchGAN #
|
| 16 |
+
#################################################################################
|
| 17 |
+
class PatchGANDiscriminator(nn.Module):
|
| 18 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
| 19 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
| 20 |
+
"""
|
| 21 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
| 22 |
+
"""Construct a PatchGAN discriminator
|
| 23 |
+
Parameters:
|
| 24 |
+
input_nc (int) -- the number of channels in input images
|
| 25 |
+
ndf (int) -- the number of filters in the last conv layer
|
| 26 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
| 27 |
+
norm_layer -- normalization layer
|
| 28 |
+
"""
|
| 29 |
+
super(PatchGANDiscriminator, self).__init__()
|
| 30 |
+
if not use_actnorm:
|
| 31 |
+
norm_layer = nn.BatchNorm2d
|
| 32 |
+
else:
|
| 33 |
+
norm_layer = ActNorm
|
| 34 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
| 35 |
+
use_bias = norm_layer.func != nn.BatchNorm2d
|
| 36 |
+
else:
|
| 37 |
+
use_bias = norm_layer != nn.BatchNorm2d
|
| 38 |
+
|
| 39 |
+
kw = 4
|
| 40 |
+
padw = 1
|
| 41 |
+
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
| 42 |
+
nf_mult = 1
|
| 43 |
+
nf_mult_prev = 1
|
| 44 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
| 45 |
+
nf_mult_prev = nf_mult
|
| 46 |
+
nf_mult = min(2 ** n, 8)
|
| 47 |
+
sequence += [
|
| 48 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
| 49 |
+
norm_layer(ndf * nf_mult),
|
| 50 |
+
nn.LeakyReLU(0.2, True)
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
nf_mult_prev = nf_mult
|
| 54 |
+
nf_mult = min(2 ** n_layers, 8)
|
| 55 |
+
sequence += [
|
| 56 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
| 57 |
+
norm_layer(ndf * nf_mult),
|
| 58 |
+
nn.LeakyReLU(0.2, True)
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
sequence += [
|
| 62 |
+
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
|
| 63 |
+
self.main = nn.Sequential(*sequence)
|
| 64 |
+
|
| 65 |
+
self.apply(self._init_weights)
|
| 66 |
+
|
| 67 |
+
def _init_weights(self, module):
|
| 68 |
+
if isinstance(module, nn.Conv2d):
|
| 69 |
+
nn.init.normal_(module.weight.data, 0.0, 0.02)
|
| 70 |
+
elif isinstance(module, nn.BatchNorm2d):
|
| 71 |
+
nn.init.normal_(module.weight.data, 1.0, 0.02)
|
| 72 |
+
nn.init.constant_(module.bias.data, 0)
|
| 73 |
+
|
| 74 |
+
def forward(self, input):
|
| 75 |
+
"""Standard forward."""
|
| 76 |
+
return self.main(input)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ActNorm(nn.Module):
|
| 80 |
+
def __init__(self, num_features, logdet=False, affine=True,
|
| 81 |
+
allow_reverse_init=False):
|
| 82 |
+
assert affine
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.logdet = logdet
|
| 85 |
+
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
| 86 |
+
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
| 87 |
+
self.allow_reverse_init = allow_reverse_init
|
| 88 |
+
|
| 89 |
+
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
| 90 |
+
|
| 91 |
+
def initialize(self, input):
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
| 94 |
+
mean = (
|
| 95 |
+
flatten.mean(1)
|
| 96 |
+
.unsqueeze(1)
|
| 97 |
+
.unsqueeze(2)
|
| 98 |
+
.unsqueeze(3)
|
| 99 |
+
.permute(1, 0, 2, 3)
|
| 100 |
+
)
|
| 101 |
+
std = (
|
| 102 |
+
flatten.std(1)
|
| 103 |
+
.unsqueeze(1)
|
| 104 |
+
.unsqueeze(2)
|
| 105 |
+
.unsqueeze(3)
|
| 106 |
+
.permute(1, 0, 2, 3)
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
self.loc.data.copy_(-mean)
|
| 110 |
+
self.scale.data.copy_(1 / (std + 1e-6))
|
| 111 |
+
|
| 112 |
+
def forward(self, input, reverse=False):
|
| 113 |
+
if reverse:
|
| 114 |
+
return self.reverse(input)
|
| 115 |
+
if len(input.shape) == 2:
|
| 116 |
+
input = input[:,:,None,None]
|
| 117 |
+
squeeze = True
|
| 118 |
+
else:
|
| 119 |
+
squeeze = False
|
| 120 |
+
|
| 121 |
+
_, _, height, width = input.shape
|
| 122 |
+
|
| 123 |
+
if self.training and self.initialized.item() == 0:
|
| 124 |
+
self.initialize(input)
|
| 125 |
+
self.initialized.fill_(1)
|
| 126 |
+
|
| 127 |
+
h = self.scale * (input + self.loc)
|
| 128 |
+
|
| 129 |
+
if squeeze:
|
| 130 |
+
h = h.squeeze(-1).squeeze(-1)
|
| 131 |
+
|
| 132 |
+
if self.logdet:
|
| 133 |
+
log_abs = torch.log(torch.abs(self.scale))
|
| 134 |
+
logdet = height*width*torch.sum(log_abs)
|
| 135 |
+
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
| 136 |
+
return h, logdet
|
| 137 |
+
|
| 138 |
+
return h
|
| 139 |
+
|
| 140 |
+
def reverse(self, output):
|
| 141 |
+
if self.training and self.initialized.item() == 0:
|
| 142 |
+
if not self.allow_reverse_init:
|
| 143 |
+
raise RuntimeError(
|
| 144 |
+
"Initializing ActNorm in reverse direction is "
|
| 145 |
+
"disabled by default. Use allow_reverse_init=True to enable."
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
self.initialize(output)
|
| 149 |
+
self.initialized.fill_(1)
|
| 150 |
+
|
| 151 |
+
if len(output.shape) == 2:
|
| 152 |
+
output = output[:,:,None,None]
|
| 153 |
+
squeeze = True
|
| 154 |
+
else:
|
| 155 |
+
squeeze = False
|
| 156 |
+
|
| 157 |
+
h = output / self.scale - self.loc
|
| 158 |
+
|
| 159 |
+
if squeeze:
|
| 160 |
+
h = h.squeeze(-1).squeeze(-1)
|
| 161 |
+
return h
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
#################################################################################
|
| 166 |
+
# StyleGAN #
|
| 167 |
+
#################################################################################
|
| 168 |
+
class StyleGANDiscriminator(nn.Module):
|
| 169 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256):
|
| 170 |
+
super().__init__()
|
| 171 |
+
channels = {
|
| 172 |
+
4: 512,
|
| 173 |
+
8: 512,
|
| 174 |
+
16: 512,
|
| 175 |
+
32: 512,
|
| 176 |
+
64: 256 * channel_multiplier,
|
| 177 |
+
128: 128 * channel_multiplier,
|
| 178 |
+
256: 64 * channel_multiplier,
|
| 179 |
+
512: 32 * channel_multiplier,
|
| 180 |
+
1024: 16 * channel_multiplier,
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
log_size = int(math.log(image_size, 2))
|
| 184 |
+
in_channel = channels[image_size]
|
| 185 |
+
|
| 186 |
+
blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()]
|
| 187 |
+
for i in range(log_size, 2, -1):
|
| 188 |
+
out_channel = channels[2 ** (i - 1)]
|
| 189 |
+
blocks.append(DiscriminatorBlock(in_channel, out_channel))
|
| 190 |
+
in_channel = out_channel
|
| 191 |
+
self.blocks = nn.ModuleList(blocks)
|
| 192 |
+
|
| 193 |
+
self.final_conv = nn.Sequential(
|
| 194 |
+
nn.Conv2d(in_channel, channels[4], 3, padding=1),
|
| 195 |
+
leaky_relu(),
|
| 196 |
+
)
|
| 197 |
+
self.final_linear = nn.Sequential(
|
| 198 |
+
nn.Linear(channels[4] * 4 * 4, channels[4]),
|
| 199 |
+
leaky_relu(),
|
| 200 |
+
nn.Linear(channels[4], 1)
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
def forward(self, x):
|
| 204 |
+
for block in self.blocks:
|
| 205 |
+
x = block(x)
|
| 206 |
+
x = self.final_conv(x)
|
| 207 |
+
x = x.view(x.shape[0], -1)
|
| 208 |
+
x = self.final_linear(x)
|
| 209 |
+
return x
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class DiscriminatorBlock(nn.Module):
|
| 213 |
+
def __init__(self, input_channels, filters, downsample=True):
|
| 214 |
+
super().__init__()
|
| 215 |
+
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1))
|
| 216 |
+
|
| 217 |
+
self.net = nn.Sequential(
|
| 218 |
+
nn.Conv2d(input_channels, filters, 3, padding=1),
|
| 219 |
+
leaky_relu(),
|
| 220 |
+
nn.Conv2d(filters, filters, 3, padding=1),
|
| 221 |
+
leaky_relu()
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
self.downsample = nn.Sequential(
|
| 225 |
+
Blur(),
|
| 226 |
+
nn.Conv2d(filters, filters, 3, padding = 1, stride = 2)
|
| 227 |
+
) if downsample else None
|
| 228 |
+
|
| 229 |
+
def forward(self, x):
|
| 230 |
+
res = self.conv_res(x)
|
| 231 |
+
x = self.net(x)
|
| 232 |
+
if exists(self.downsample):
|
| 233 |
+
x = self.downsample(x)
|
| 234 |
+
x = (x + res) * (1 / math.sqrt(2))
|
| 235 |
+
return x
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class Blur(nn.Module):
|
| 239 |
+
def __init__(self):
|
| 240 |
+
super().__init__()
|
| 241 |
+
f = torch.Tensor([1, 2, 1])
|
| 242 |
+
self.register_buffer('f', f)
|
| 243 |
+
|
| 244 |
+
def forward(self, x):
|
| 245 |
+
f = self.f
|
| 246 |
+
f = f[None, None, :] * f [None, :, None]
|
| 247 |
+
return filter2d(x, f, normalized=True)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def leaky_relu(p=0.2):
|
| 251 |
+
return nn.LeakyReLU(p, inplace=True)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def exists(val):
|
| 255 |
+
return val is not None
|
tokenizer/tokenizer_image/discriminator_patchgan.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# taming-transformers: https://github.com/CompVis/taming-transformers
|
| 3 |
+
import functools
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class NLayerDiscriminator(nn.Module):
|
| 9 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
| 10 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
| 13 |
+
"""Construct a PatchGAN discriminator
|
| 14 |
+
Parameters:
|
| 15 |
+
input_nc (int) -- the number of channels in input images
|
| 16 |
+
ndf (int) -- the number of filters in the last conv layer
|
| 17 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
| 18 |
+
norm_layer -- normalization layer
|
| 19 |
+
"""
|
| 20 |
+
super(NLayerDiscriminator, self).__init__()
|
| 21 |
+
if not use_actnorm:
|
| 22 |
+
norm_layer = nn.BatchNorm2d
|
| 23 |
+
else:
|
| 24 |
+
norm_layer = ActNorm
|
| 25 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
| 26 |
+
use_bias = norm_layer.func != nn.BatchNorm2d
|
| 27 |
+
else:
|
| 28 |
+
use_bias = norm_layer != nn.BatchNorm2d
|
| 29 |
+
|
| 30 |
+
kw = 4
|
| 31 |
+
padw = 1
|
| 32 |
+
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
| 33 |
+
nf_mult = 1
|
| 34 |
+
nf_mult_prev = 1
|
| 35 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
| 36 |
+
nf_mult_prev = nf_mult
|
| 37 |
+
nf_mult = min(2 ** n, 8)
|
| 38 |
+
sequence += [
|
| 39 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
| 40 |
+
norm_layer(ndf * nf_mult),
|
| 41 |
+
nn.LeakyReLU(0.2, True)
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
nf_mult_prev = nf_mult
|
| 45 |
+
nf_mult = min(2 ** n_layers, 8)
|
| 46 |
+
sequence += [
|
| 47 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
| 48 |
+
norm_layer(ndf * nf_mult),
|
| 49 |
+
nn.LeakyReLU(0.2, True)
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
sequence += [
|
| 53 |
+
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
|
| 54 |
+
self.main = nn.Sequential(*sequence)
|
| 55 |
+
|
| 56 |
+
self.apply(self._init_weights)
|
| 57 |
+
|
| 58 |
+
def _init_weights(self, module):
|
| 59 |
+
if isinstance(module, nn.Conv2d):
|
| 60 |
+
nn.init.normal_(module.weight.data, 0.0, 0.02)
|
| 61 |
+
elif isinstance(module, nn.BatchNorm2d):
|
| 62 |
+
nn.init.normal_(module.weight.data, 1.0, 0.02)
|
| 63 |
+
nn.init.constant_(module.bias.data, 0)
|
| 64 |
+
|
| 65 |
+
def forward(self, input):
|
| 66 |
+
"""Standard forward."""
|
| 67 |
+
return self.main(input)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class ActNorm(nn.Module):
|
| 71 |
+
def __init__(self, num_features, logdet=False, affine=True,
|
| 72 |
+
allow_reverse_init=False):
|
| 73 |
+
assert affine
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.logdet = logdet
|
| 76 |
+
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
| 77 |
+
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
| 78 |
+
self.allow_reverse_init = allow_reverse_init
|
| 79 |
+
|
| 80 |
+
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
| 81 |
+
|
| 82 |
+
def initialize(self, input):
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
| 85 |
+
mean = (
|
| 86 |
+
flatten.mean(1)
|
| 87 |
+
.unsqueeze(1)
|
| 88 |
+
.unsqueeze(2)
|
| 89 |
+
.unsqueeze(3)
|
| 90 |
+
.permute(1, 0, 2, 3)
|
| 91 |
+
)
|
| 92 |
+
std = (
|
| 93 |
+
flatten.std(1)
|
| 94 |
+
.unsqueeze(1)
|
| 95 |
+
.unsqueeze(2)
|
| 96 |
+
.unsqueeze(3)
|
| 97 |
+
.permute(1, 0, 2, 3)
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.loc.data.copy_(-mean)
|
| 101 |
+
self.scale.data.copy_(1 / (std + 1e-6))
|
| 102 |
+
|
| 103 |
+
def forward(self, input, reverse=False):
|
| 104 |
+
if reverse:
|
| 105 |
+
return self.reverse(input)
|
| 106 |
+
if len(input.shape) == 2:
|
| 107 |
+
input = input[:,:,None,None]
|
| 108 |
+
squeeze = True
|
| 109 |
+
else:
|
| 110 |
+
squeeze = False
|
| 111 |
+
|
| 112 |
+
_, _, height, width = input.shape
|
| 113 |
+
|
| 114 |
+
if self.training and self.initialized.item() == 0:
|
| 115 |
+
self.initialize(input)
|
| 116 |
+
self.initialized.fill_(1)
|
| 117 |
+
|
| 118 |
+
h = self.scale * (input + self.loc)
|
| 119 |
+
|
| 120 |
+
if squeeze:
|
| 121 |
+
h = h.squeeze(-1).squeeze(-1)
|
| 122 |
+
|
| 123 |
+
if self.logdet:
|
| 124 |
+
log_abs = torch.log(torch.abs(self.scale))
|
| 125 |
+
logdet = height*width*torch.sum(log_abs)
|
| 126 |
+
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
| 127 |
+
return h, logdet
|
| 128 |
+
|
| 129 |
+
return h
|
| 130 |
+
|
| 131 |
+
def reverse(self, output):
|
| 132 |
+
if self.training and self.initialized.item() == 0:
|
| 133 |
+
if not self.allow_reverse_init:
|
| 134 |
+
raise RuntimeError(
|
| 135 |
+
"Initializing ActNorm in reverse direction is "
|
| 136 |
+
"disabled by default. Use allow_reverse_init=True to enable."
|
| 137 |
+
)
|
| 138 |
+
else:
|
| 139 |
+
self.initialize(output)
|
| 140 |
+
self.initialized.fill_(1)
|
| 141 |
+
|
| 142 |
+
if len(output.shape) == 2:
|
| 143 |
+
output = output[:,:,None,None]
|
| 144 |
+
squeeze = True
|
| 145 |
+
else:
|
| 146 |
+
squeeze = False
|
| 147 |
+
|
| 148 |
+
h = output / self.scale - self.loc
|
| 149 |
+
|
| 150 |
+
if squeeze:
|
| 151 |
+
h = h.squeeze(-1).squeeze(-1)
|
| 152 |
+
return h
|
tokenizer/tokenizer_image/discriminator_stylegan.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# stylegan2-pytorch: https://github.com/lucidrains/stylegan2-pytorch/blob/master/stylegan2_pytorch/stylegan2_pytorch.py
|
| 3 |
+
# stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py
|
| 4 |
+
# maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py
|
| 5 |
+
import math
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
try:
|
| 9 |
+
from kornia.filters import filter2d
|
| 10 |
+
except:
|
| 11 |
+
pass
|
| 12 |
+
|
| 13 |
+
class Discriminator(nn.Module):
|
| 14 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256):
|
| 15 |
+
super().__init__()
|
| 16 |
+
channels = {
|
| 17 |
+
4: 512,
|
| 18 |
+
8: 512,
|
| 19 |
+
16: 512,
|
| 20 |
+
32: 512,
|
| 21 |
+
64: 256 * channel_multiplier,
|
| 22 |
+
128: 128 * channel_multiplier,
|
| 23 |
+
256: 64 * channel_multiplier,
|
| 24 |
+
512: 32 * channel_multiplier,
|
| 25 |
+
1024: 16 * channel_multiplier,
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
log_size = int(math.log(image_size, 2))
|
| 29 |
+
in_channel = channels[image_size]
|
| 30 |
+
|
| 31 |
+
blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()]
|
| 32 |
+
for i in range(log_size, 2, -1):
|
| 33 |
+
out_channel = channels[2 ** (i - 1)]
|
| 34 |
+
blocks.append(DiscriminatorBlock(in_channel, out_channel))
|
| 35 |
+
in_channel = out_channel
|
| 36 |
+
self.blocks = nn.ModuleList(blocks)
|
| 37 |
+
|
| 38 |
+
self.final_conv = nn.Sequential(
|
| 39 |
+
nn.Conv2d(in_channel, channels[4], 3, padding=1),
|
| 40 |
+
leaky_relu(),
|
| 41 |
+
)
|
| 42 |
+
self.final_linear = nn.Sequential(
|
| 43 |
+
nn.Linear(channels[4] * 4 * 4, channels[4]),
|
| 44 |
+
leaky_relu(),
|
| 45 |
+
nn.Linear(channels[4], 1)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
for block in self.blocks:
|
| 50 |
+
x = block(x)
|
| 51 |
+
x = self.final_conv(x)
|
| 52 |
+
x = x.view(x.shape[0], -1)
|
| 53 |
+
x = self.final_linear(x)
|
| 54 |
+
return x
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class DiscriminatorBlock(nn.Module):
|
| 58 |
+
def __init__(self, input_channels, filters, downsample=True):
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1))
|
| 61 |
+
|
| 62 |
+
self.net = nn.Sequential(
|
| 63 |
+
nn.Conv2d(input_channels, filters, 3, padding=1),
|
| 64 |
+
leaky_relu(),
|
| 65 |
+
nn.Conv2d(filters, filters, 3, padding=1),
|
| 66 |
+
leaky_relu()
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
self.downsample = nn.Sequential(
|
| 70 |
+
Blur(),
|
| 71 |
+
nn.Conv2d(filters, filters, 3, padding = 1, stride = 2)
|
| 72 |
+
) if downsample else None
|
| 73 |
+
|
| 74 |
+
def forward(self, x):
|
| 75 |
+
res = self.conv_res(x)
|
| 76 |
+
x = self.net(x)
|
| 77 |
+
if exists(self.downsample):
|
| 78 |
+
x = self.downsample(x)
|
| 79 |
+
x = (x + res) * (1 / math.sqrt(2))
|
| 80 |
+
return x
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class Blur(nn.Module):
|
| 85 |
+
def __init__(self):
|
| 86 |
+
super().__init__()
|
| 87 |
+
f = torch.Tensor([1, 2, 1])
|
| 88 |
+
self.register_buffer('f', f)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
f = self.f
|
| 92 |
+
f = f[None, None, :] * f [None, :, None]
|
| 93 |
+
return filter2d(x, f, normalized=True)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def leaky_relu(p=0.2):
|
| 97 |
+
return nn.LeakyReLU(p, inplace=True)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def exists(val):
|
| 101 |
+
return val is not None
|
tokenizer/tokenizer_image/lpips.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
| 2 |
+
|
| 3 |
+
import os, hashlib
|
| 4 |
+
import requests
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torchvision import models
|
| 10 |
+
from collections import namedtuple
|
| 11 |
+
|
| 12 |
+
URL_MAP = {
|
| 13 |
+
"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
CKPT_MAP = {
|
| 17 |
+
"vgg_lpips": "vgg.pth"
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
MD5_MAP = {
|
| 21 |
+
"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def download(url, local_path, chunk_size=1024):
|
| 25 |
+
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
|
| 26 |
+
with requests.get(url, stream=True) as r:
|
| 27 |
+
total_size = int(r.headers.get("content-length", 0))
|
| 28 |
+
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
|
| 29 |
+
with open(local_path, "wb") as f:
|
| 30 |
+
for data in r.iter_content(chunk_size=chunk_size):
|
| 31 |
+
if data:
|
| 32 |
+
f.write(data)
|
| 33 |
+
pbar.update(chunk_size)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def md5_hash(path):
|
| 37 |
+
with open(path, "rb") as f:
|
| 38 |
+
content = f.read()
|
| 39 |
+
return hashlib.md5(content).hexdigest()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_ckpt_path(name, root, check=False):
|
| 43 |
+
assert name in URL_MAP
|
| 44 |
+
path = os.path.join(root, CKPT_MAP[name])
|
| 45 |
+
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
|
| 46 |
+
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
|
| 47 |
+
download(URL_MAP[name], path)
|
| 48 |
+
md5 = md5_hash(path)
|
| 49 |
+
assert md5 == MD5_MAP[name], md5
|
| 50 |
+
return path
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class LPIPS(nn.Module):
|
| 54 |
+
# Learned perceptual metric
|
| 55 |
+
def __init__(self, use_dropout=True):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.scaling_layer = ScalingLayer()
|
| 58 |
+
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
| 59 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
| 60 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
| 61 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
| 62 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
| 63 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
| 64 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
| 65 |
+
self.load_from_pretrained()
|
| 66 |
+
for param in self.parameters():
|
| 67 |
+
param.requires_grad = False
|
| 68 |
+
|
| 69 |
+
def load_from_pretrained(self, name="vgg_lpips"):
|
| 70 |
+
ckpt = get_ckpt_path(name, os.path.join(os.path.dirname(os.path.abspath(__file__)), "cache"))
|
| 71 |
+
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
| 72 |
+
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
| 73 |
+
|
| 74 |
+
@classmethod
|
| 75 |
+
def from_pretrained(cls, name="vgg_lpips"):
|
| 76 |
+
if name != "vgg_lpips":
|
| 77 |
+
raise NotImplementedError
|
| 78 |
+
model = cls()
|
| 79 |
+
ckpt = get_ckpt_path(name, os.path.join(os.path.dirname(os.path.abspath(__file__)), "cache"))
|
| 80 |
+
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
| 81 |
+
return model
|
| 82 |
+
|
| 83 |
+
def forward(self, input, target):
|
| 84 |
+
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
| 85 |
+
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
| 86 |
+
feats0, feats1, diffs = {}, {}, {}
|
| 87 |
+
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
| 88 |
+
for kk in range(len(self.chns)):
|
| 89 |
+
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
|
| 90 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
| 91 |
+
|
| 92 |
+
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
|
| 93 |
+
val = res[0]
|
| 94 |
+
for l in range(1, len(self.chns)):
|
| 95 |
+
val += res[l]
|
| 96 |
+
return val
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class ScalingLayer(nn.Module):
|
| 100 |
+
def __init__(self):
|
| 101 |
+
super(ScalingLayer, self).__init__()
|
| 102 |
+
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
| 103 |
+
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
| 104 |
+
|
| 105 |
+
def forward(self, inp):
|
| 106 |
+
return (inp - self.shift) / self.scale
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class NetLinLayer(nn.Module):
|
| 110 |
+
""" A single linear layer which does a 1x1 conv """
|
| 111 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
| 112 |
+
super(NetLinLayer, self).__init__()
|
| 113 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
| 114 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
| 115 |
+
self.model = nn.Sequential(*layers)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class vgg16(torch.nn.Module):
|
| 119 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
| 120 |
+
super(vgg16, self).__init__()
|
| 121 |
+
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
| 122 |
+
self.slice1 = torch.nn.Sequential()
|
| 123 |
+
self.slice2 = torch.nn.Sequential()
|
| 124 |
+
self.slice3 = torch.nn.Sequential()
|
| 125 |
+
self.slice4 = torch.nn.Sequential()
|
| 126 |
+
self.slice5 = torch.nn.Sequential()
|
| 127 |
+
self.N_slices = 5
|
| 128 |
+
for x in range(4):
|
| 129 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
| 130 |
+
for x in range(4, 9):
|
| 131 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
| 132 |
+
for x in range(9, 16):
|
| 133 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
| 134 |
+
for x in range(16, 23):
|
| 135 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
| 136 |
+
for x in range(23, 30):
|
| 137 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
| 138 |
+
if not requires_grad:
|
| 139 |
+
for param in self.parameters():
|
| 140 |
+
param.requires_grad = False
|
| 141 |
+
|
| 142 |
+
def forward(self, X):
|
| 143 |
+
h = self.slice1(X)
|
| 144 |
+
h_relu1_2 = h
|
| 145 |
+
h = self.slice2(h)
|
| 146 |
+
h_relu2_2 = h
|
| 147 |
+
h = self.slice3(h)
|
| 148 |
+
h_relu3_3 = h
|
| 149 |
+
h = self.slice4(h)
|
| 150 |
+
h_relu4_3 = h
|
| 151 |
+
h = self.slice5(h)
|
| 152 |
+
h_relu5_3 = h
|
| 153 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
| 154 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
| 155 |
+
return out
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def normalize_tensor(x,eps=1e-10):
|
| 159 |
+
norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
|
| 160 |
+
return x/(norm_factor+eps)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def spatial_average(x, keepdim=True):
|
| 164 |
+
return x.mean([2,3],keepdim=keepdim)
|
tokenizer/tokenizer_image/reconstruction_vq_ddp.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.utils.data import DataLoader
|
| 7 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import numpy as np
|
| 13 |
+
import argparse
|
| 14 |
+
import itertools
|
| 15 |
+
|
| 16 |
+
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
|
| 17 |
+
from skimage.metrics import structural_similarity as ssim_loss
|
| 18 |
+
from dataset.augmentation import center_crop_arr
|
| 19 |
+
from dataset.build import build_dataset
|
| 20 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def create_npz_from_sample_folder(sample_dir, num=50000):
|
| 25 |
+
"""
|
| 26 |
+
Builds a single .npz file from a folder of .png samples.
|
| 27 |
+
"""
|
| 28 |
+
samples = []
|
| 29 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 30 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 31 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 32 |
+
samples.append(sample_np)
|
| 33 |
+
samples = np.stack(samples)
|
| 34 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 35 |
+
npz_path = f"{sample_dir}.npz"
|
| 36 |
+
np.savez(npz_path, arr_0=samples)
|
| 37 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 38 |
+
return npz_path
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def main(args):
|
| 43 |
+
# Setup PyTorch:
|
| 44 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 45 |
+
torch.set_grad_enabled(False)
|
| 46 |
+
|
| 47 |
+
# Setup DDP:
|
| 48 |
+
dist.init_process_group("nccl")
|
| 49 |
+
rank = dist.get_rank()
|
| 50 |
+
device = rank % torch.cuda.device_count()
|
| 51 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 52 |
+
torch.manual_seed(seed)
|
| 53 |
+
torch.cuda.set_device(device)
|
| 54 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 55 |
+
|
| 56 |
+
# create and load model
|
| 57 |
+
vq_model = VQ_models[args.vq_model](
|
| 58 |
+
codebook_size=args.codebook_size,
|
| 59 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 60 |
+
vq_model.to(device)
|
| 61 |
+
vq_model.eval()
|
| 62 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 63 |
+
if "ema" in checkpoint: # ema
|
| 64 |
+
model_weight = checkpoint["ema"]
|
| 65 |
+
elif "model" in checkpoint: # ddp
|
| 66 |
+
model_weight = checkpoint["model"]
|
| 67 |
+
elif "state_dict" in checkpoint:
|
| 68 |
+
model_weight = checkpoint["state_dict"]
|
| 69 |
+
else:
|
| 70 |
+
raise Exception("please check model weight")
|
| 71 |
+
vq_model.load_state_dict(model_weight)
|
| 72 |
+
del checkpoint
|
| 73 |
+
|
| 74 |
+
# Create folder to save samples:
|
| 75 |
+
folder_name = (f"{args.vq_model}-{args.dataset}-size-{args.image_size}-size-{args.image_size_eval}"
|
| 76 |
+
f"-codebook-size-{args.codebook_size}-dim-{args.codebook_embed_dim}-seed-{args.global_seed}")
|
| 77 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 78 |
+
if rank == 0:
|
| 79 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 80 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 81 |
+
dist.barrier()
|
| 82 |
+
|
| 83 |
+
# Setup data:
|
| 84 |
+
transform = transforms.Compose([
|
| 85 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 86 |
+
transforms.ToTensor(),
|
| 87 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 88 |
+
])
|
| 89 |
+
|
| 90 |
+
if args.dataset == 'imagenet':
|
| 91 |
+
dataset = build_dataset(args, transform=transform)
|
| 92 |
+
num_fid_samples = 50000
|
| 93 |
+
elif args.dataset == 'coco':
|
| 94 |
+
dataset = build_dataset(args, transform=transform)
|
| 95 |
+
num_fid_samples = 5000
|
| 96 |
+
elif args.dataset == 'imagenet_code':
|
| 97 |
+
dataset = build_dataset(args)
|
| 98 |
+
num_fid_samples = 50000
|
| 99 |
+
else:
|
| 100 |
+
raise Exception("please check dataset")
|
| 101 |
+
|
| 102 |
+
sampler = DistributedSampler(
|
| 103 |
+
dataset,
|
| 104 |
+
num_replicas=dist.get_world_size(),
|
| 105 |
+
rank=rank,
|
| 106 |
+
shuffle=False,
|
| 107 |
+
seed=args.global_seed
|
| 108 |
+
)
|
| 109 |
+
loader = DataLoader(
|
| 110 |
+
dataset,
|
| 111 |
+
batch_size=args.per_proc_batch_size,
|
| 112 |
+
shuffle=False,
|
| 113 |
+
sampler=sampler,
|
| 114 |
+
num_workers=args.num_workers,
|
| 115 |
+
pin_memory=True,
|
| 116 |
+
drop_last=False
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 120 |
+
n = args.per_proc_batch_size
|
| 121 |
+
global_batch_size = n * dist.get_world_size()
|
| 122 |
+
|
| 123 |
+
psnr_val_rgb = []
|
| 124 |
+
ssim_val_rgb = []
|
| 125 |
+
loader = tqdm(loader) if rank == 0 else loader
|
| 126 |
+
total = 0
|
| 127 |
+
# for x, _ in loader:
|
| 128 |
+
for batch in loader:
|
| 129 |
+
x = batch['condition_imgs'].repeat(1,3,1,1)
|
| 130 |
+
# import pdb
|
| 131 |
+
# pdb.set_trace()
|
| 132 |
+
if args.image_size_eval != args.image_size:
|
| 133 |
+
rgb_gts = F.interpolate(x, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
|
| 134 |
+
else:
|
| 135 |
+
rgb_gts = x
|
| 136 |
+
rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
|
| 137 |
+
x = x.to(device, non_blocking=True)
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
latent, _, [_, _, indices] = vq_model.encode(x.float())
|
| 140 |
+
import pdb;pdb.set_trace()
|
| 141 |
+
samples = vq_model.decode_code(indices, latent.shape) # output value is between [-1, 1]
|
| 142 |
+
if args.image_size_eval != args.image_size:
|
| 143 |
+
samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
|
| 144 |
+
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 145 |
+
|
| 146 |
+
# Save samples to disk as individual .png files
|
| 147 |
+
for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
|
| 148 |
+
index = i * dist.get_world_size() + rank + total
|
| 149 |
+
# Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
|
| 150 |
+
# metric
|
| 151 |
+
rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
|
| 152 |
+
psnr = psnr_loss(rgb_restored, rgb_gt)
|
| 153 |
+
ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
|
| 154 |
+
psnr_val_rgb.append(psnr)
|
| 155 |
+
ssim_val_rgb.append(ssim)
|
| 156 |
+
|
| 157 |
+
total += global_batch_size
|
| 158 |
+
|
| 159 |
+
# ------------------------------------
|
| 160 |
+
# Summary
|
| 161 |
+
# ------------------------------------
|
| 162 |
+
# Make sure all processes have finished saving their samples
|
| 163 |
+
dist.barrier()
|
| 164 |
+
world_size = dist.get_world_size()
|
| 165 |
+
gather_psnr_val = [None for _ in range(world_size)]
|
| 166 |
+
gather_ssim_val = [None for _ in range(world_size)]
|
| 167 |
+
dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
|
| 168 |
+
dist.all_gather_object(gather_ssim_val, ssim_val_rgb)
|
| 169 |
+
|
| 170 |
+
if rank == 0:
|
| 171 |
+
gather_psnr_val = list(itertools.chain(*gather_psnr_val))
|
| 172 |
+
gather_ssim_val = list(itertools.chain(*gather_ssim_val))
|
| 173 |
+
psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
|
| 174 |
+
ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
|
| 175 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
|
| 176 |
+
|
| 177 |
+
result_file = f"{sample_folder_dir}_results.txt"
|
| 178 |
+
print("writing results to {}".format(result_file))
|
| 179 |
+
with open(result_file, 'w') as f:
|
| 180 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)
|
| 181 |
+
|
| 182 |
+
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
|
| 183 |
+
print("Done.")
|
| 184 |
+
|
| 185 |
+
dist.barrier()
|
| 186 |
+
dist.destroy_process_group()
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
parser = argparse.ArgumentParser()
|
| 191 |
+
parser.add_argument("--data-path", type=str, default=None)
|
| 192 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 193 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco', 'imagenet_code'], default='imagenet')
|
| 194 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 195 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 196 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 197 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 198 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=256)
|
| 199 |
+
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
|
| 200 |
+
parser.add_argument("--sample-dir", type=str, default="reconstructions")
|
| 201 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 202 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 203 |
+
parser.add_argument("--num-workers", type=int, default=4)
|
| 204 |
+
parser.add_argument("--condition", type=str, choices=['canny', 'hed'], default='canny')
|
| 205 |
+
parser.add_argument("--get-condition-img", type=bool, default=False)
|
| 206 |
+
args = parser.parse_args()
|
| 207 |
+
main(args)
|
tokenizer/tokenizer_image/vq_demo.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import argparse
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 10 |
+
from dataset.augmentation import center_crop_arr
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def main(args):
|
| 14 |
+
# Setup PyTorch:
|
| 15 |
+
torch.manual_seed(args.seed)
|
| 16 |
+
torch.set_grad_enabled(False)
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
+
# create and load model
|
| 20 |
+
model = VQ_models[args.vq_model](
|
| 21 |
+
codebook_size=args.codebook_size,
|
| 22 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 23 |
+
model.to(device)
|
| 24 |
+
model.eval()
|
| 25 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 26 |
+
if "ema" in checkpoint: # ema
|
| 27 |
+
model_weight = checkpoint["ema"]
|
| 28 |
+
elif "model" in checkpoint: # ddp
|
| 29 |
+
model_weight = checkpoint["model"]
|
| 30 |
+
elif "state_dict" in checkpoint:
|
| 31 |
+
model_weight = checkpoint["state_dict"]
|
| 32 |
+
else:
|
| 33 |
+
raise Exception("please check model weight")
|
| 34 |
+
model.load_state_dict(model_weight)
|
| 35 |
+
del checkpoint
|
| 36 |
+
|
| 37 |
+
# output dir
|
| 38 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 39 |
+
out_path = args.image_path.replace('.jpg', '_{}.jpg'.format(args.suffix))
|
| 40 |
+
out_path = out_path.replace('.jpeg', '_{}.jpeg'.format(args.suffix))
|
| 41 |
+
out_path = out_path.replace('.png', '_{}.png'.format(args.suffix))
|
| 42 |
+
out_filename = out_path.split('/')[-1]
|
| 43 |
+
out_path = os.path.join(args.output_dir, out_filename)
|
| 44 |
+
|
| 45 |
+
# load image
|
| 46 |
+
pil_image = Image.open(args.image_path).convert("RGB")
|
| 47 |
+
img = center_crop_arr(pil_image, args.image_size)
|
| 48 |
+
# # preprocess
|
| 49 |
+
# size_org = img.size
|
| 50 |
+
# img = img.resize((input_size, input_size))
|
| 51 |
+
img = np.array(img) / 255.
|
| 52 |
+
x = 2.0 * img - 1.0 # x value is between [-1, 1]
|
| 53 |
+
x = torch.tensor(x)
|
| 54 |
+
x = x.unsqueeze(dim=0)
|
| 55 |
+
x = torch.einsum('nhwc->nchw', x)
|
| 56 |
+
x_input = x.float().to("cuda")
|
| 57 |
+
|
| 58 |
+
# inference
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
latent, _, [_, _, indices] = model.encode(x_input)
|
| 61 |
+
output = model.decode_code(indices, latent.shape) # output value is between [-1, 1]
|
| 62 |
+
|
| 63 |
+
# postprocess
|
| 64 |
+
output = F.interpolate(output, size=[args.image_size, args.image_size], mode='bicubic').permute(0, 2, 3, 1)[0]
|
| 65 |
+
sample = torch.clamp(127.5 * output + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
|
| 66 |
+
|
| 67 |
+
# save
|
| 68 |
+
Image.fromarray(sample).save(out_path)
|
| 69 |
+
print("Reconstructed image is saved to {}".format(out_path))
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
parser = argparse.ArgumentParser()
|
| 74 |
+
parser.add_argument("--image-path", type=str, default="assets/example.jpg")
|
| 75 |
+
parser.add_argument("--output-dir", type=str, default="output_vq_demo")
|
| 76 |
+
parser.add_argument("--suffix", type=str, default="tokenizer_image")
|
| 77 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 78 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 79 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 80 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 81 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512, 1024], default=512)
|
| 82 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 83 |
+
args = parser.parse_args()
|
| 84 |
+
main(args)
|
tokenizer/tokenizer_image/vq_loss.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# taming-transformers: https://github.com/CompVis/taming-transformers
|
| 3 |
+
# muse-maskgit-pytorch: https://github.com/lucidrains/muse-maskgit-pytorch/blob/main/muse_maskgit_pytorch/vqgan_vae.py
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from tokenizer.tokenizer_image.lpips import LPIPS
|
| 9 |
+
from tokenizer.tokenizer_image.discriminator_patchgan import NLayerDiscriminator as PatchGANDiscriminator
|
| 10 |
+
from tokenizer.tokenizer_image.discriminator_stylegan import Discriminator as StyleGANDiscriminator
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def hinge_d_loss(logits_real, logits_fake):
|
| 15 |
+
loss_real = torch.mean(F.relu(1. - logits_real))
|
| 16 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake))
|
| 17 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
| 18 |
+
return d_loss
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def vanilla_d_loss(logits_real, logits_fake):
|
| 22 |
+
loss_real = torch.mean(F.softplus(-logits_real))
|
| 23 |
+
loss_fake = torch.mean(F.softplus(logits_fake))
|
| 24 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
| 25 |
+
return d_loss
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def non_saturating_d_loss(logits_real, logits_fake):
|
| 29 |
+
loss_real = torch.mean(F.binary_cross_entropy_with_logits(torch.ones_like(logits_real), logits_real))
|
| 30 |
+
loss_fake = torch.mean(F.binary_cross_entropy_with_logits(torch.zeros_like(logits_fake), logits_fake))
|
| 31 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
| 32 |
+
return d_loss
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def hinge_gen_loss(logit_fake):
|
| 36 |
+
return -torch.mean(logit_fake)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def non_saturating_gen_loss(logit_fake):
|
| 40 |
+
return torch.mean(F.binary_cross_entropy_with_logits(torch.ones_like(logit_fake), logit_fake))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
| 44 |
+
if global_step < threshold:
|
| 45 |
+
weight = value
|
| 46 |
+
return weight
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class VQLoss(nn.Module):
|
| 50 |
+
def __init__(self, disc_start, disc_loss="hinge", disc_dim=64, disc_type='patchgan', image_size=256,
|
| 51 |
+
disc_num_layers=3, disc_in_channels=3, disc_weight=1.0, disc_adaptive_weight = False,
|
| 52 |
+
gen_adv_loss='hinge', reconstruction_loss='l2', reconstruction_weight=1.0,
|
| 53 |
+
codebook_weight=1.0, perceptual_weight=1.0,
|
| 54 |
+
):
|
| 55 |
+
super().__init__()
|
| 56 |
+
# discriminator loss
|
| 57 |
+
assert disc_type in ["patchgan", "stylegan"]
|
| 58 |
+
assert disc_loss in ["hinge", "vanilla", "non-saturating"]
|
| 59 |
+
if disc_type == "patchgan":
|
| 60 |
+
self.discriminator = PatchGANDiscriminator(
|
| 61 |
+
input_nc=disc_in_channels,
|
| 62 |
+
n_layers=disc_num_layers,
|
| 63 |
+
ndf=disc_dim,
|
| 64 |
+
)
|
| 65 |
+
elif disc_type == "stylegan":
|
| 66 |
+
self.discriminator = StyleGANDiscriminator(
|
| 67 |
+
input_nc=disc_in_channels,
|
| 68 |
+
image_size=image_size,
|
| 69 |
+
)
|
| 70 |
+
else:
|
| 71 |
+
raise ValueError(f"Unknown GAN discriminator type '{disc_type}'.")
|
| 72 |
+
if disc_loss == "hinge":
|
| 73 |
+
self.disc_loss = hinge_d_loss
|
| 74 |
+
elif disc_loss == "vanilla":
|
| 75 |
+
self.disc_loss = vanilla_d_loss
|
| 76 |
+
elif disc_loss == "non-saturating":
|
| 77 |
+
self.disc_loss = non_saturating_d_loss
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError(f"Unknown GAN discriminator loss '{disc_loss}'.")
|
| 80 |
+
self.discriminator_iter_start = disc_start
|
| 81 |
+
self.disc_weight = disc_weight
|
| 82 |
+
self.disc_adaptive_weight = disc_adaptive_weight
|
| 83 |
+
|
| 84 |
+
assert gen_adv_loss in ["hinge", "non-saturating"]
|
| 85 |
+
# gen_adv_loss
|
| 86 |
+
if gen_adv_loss == "hinge":
|
| 87 |
+
self.gen_adv_loss = hinge_gen_loss
|
| 88 |
+
elif gen_adv_loss == "non-saturating":
|
| 89 |
+
self.gen_adv_loss = non_saturating_gen_loss
|
| 90 |
+
else:
|
| 91 |
+
raise ValueError(f"Unknown GAN generator loss '{gen_adv_loss}'.")
|
| 92 |
+
|
| 93 |
+
# perceptual loss
|
| 94 |
+
self.perceptual_loss = LPIPS().eval()
|
| 95 |
+
self.perceptual_weight = perceptual_weight
|
| 96 |
+
|
| 97 |
+
# reconstruction loss
|
| 98 |
+
if reconstruction_loss == "l1":
|
| 99 |
+
self.rec_loss = F.l1_loss
|
| 100 |
+
elif reconstruction_loss == "l2":
|
| 101 |
+
self.rec_loss = F.mse_loss
|
| 102 |
+
else:
|
| 103 |
+
raise ValueError(f"Unknown rec loss '{reconstruction_loss}'.")
|
| 104 |
+
self.rec_weight = reconstruction_weight
|
| 105 |
+
|
| 106 |
+
# codebook loss
|
| 107 |
+
self.codebook_weight = codebook_weight
|
| 108 |
+
|
| 109 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer):
|
| 110 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
| 111 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 112 |
+
|
| 113 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
| 114 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
| 115 |
+
return d_weight.detach()
|
| 116 |
+
|
| 117 |
+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, global_step, last_layer=None,
|
| 118 |
+
logger=None, log_every=100):
|
| 119 |
+
# generator update
|
| 120 |
+
if optimizer_idx == 0:
|
| 121 |
+
# reconstruction loss
|
| 122 |
+
rec_loss = self.rec_loss(inputs.contiguous(), reconstructions.contiguous())
|
| 123 |
+
|
| 124 |
+
# perceptual loss
|
| 125 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
| 126 |
+
p_loss = torch.mean(p_loss)
|
| 127 |
+
|
| 128 |
+
# discriminator loss
|
| 129 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
| 130 |
+
generator_adv_loss = self.gen_adv_loss(logits_fake)
|
| 131 |
+
|
| 132 |
+
if self.disc_adaptive_weight:
|
| 133 |
+
null_loss = self.rec_weight * rec_loss + self.perceptual_weight * p_loss
|
| 134 |
+
disc_adaptive_weight = self.calculate_adaptive_weight(null_loss, generator_adv_loss, last_layer=last_layer)
|
| 135 |
+
else:
|
| 136 |
+
disc_adaptive_weight = 1
|
| 137 |
+
disc_weight = adopt_weight(self.disc_weight, global_step, threshold=self.discriminator_iter_start)
|
| 138 |
+
|
| 139 |
+
loss = self.rec_weight * rec_loss + \
|
| 140 |
+
self.perceptual_weight * p_loss + \
|
| 141 |
+
disc_adaptive_weight * disc_weight * generator_adv_loss + \
|
| 142 |
+
codebook_loss[0] + codebook_loss[1] + codebook_loss[2]
|
| 143 |
+
|
| 144 |
+
if global_step % log_every == 0:
|
| 145 |
+
rec_loss = self.rec_weight * rec_loss
|
| 146 |
+
p_loss = self.perceptual_weight * p_loss
|
| 147 |
+
generator_adv_loss = disc_adaptive_weight * disc_weight * generator_adv_loss
|
| 148 |
+
logger.info(f"(Generator) rec_loss: {rec_loss:.4f}, perceptual_loss: {p_loss:.4f}, "
|
| 149 |
+
f"vq_loss: {codebook_loss[0]:.4f}, commit_loss: {codebook_loss[1]:.4f}, entropy_loss: {codebook_loss[2]:.4f}, "
|
| 150 |
+
f"codebook_usage: {codebook_loss[3]:.4f}, generator_adv_loss: {generator_adv_loss:.4f}, "
|
| 151 |
+
f"disc_adaptive_weight: {disc_adaptive_weight:.4f}, disc_weight: {disc_weight:.4f}")
|
| 152 |
+
return loss
|
| 153 |
+
|
| 154 |
+
# discriminator update
|
| 155 |
+
if optimizer_idx == 1:
|
| 156 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
| 157 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
| 158 |
+
|
| 159 |
+
disc_weight = adopt_weight(self.disc_weight, global_step, threshold=self.discriminator_iter_start)
|
| 160 |
+
d_adversarial_loss = disc_weight * self.disc_loss(logits_real, logits_fake)
|
| 161 |
+
|
| 162 |
+
if global_step % log_every == 0:
|
| 163 |
+
logits_real = logits_real.detach().mean()
|
| 164 |
+
logits_fake = logits_fake.detach().mean()
|
| 165 |
+
logger.info(f"(Discriminator) "
|
| 166 |
+
f"discriminator_adv_loss: {d_adversarial_loss:.4f}, disc_weight: {disc_weight:.4f}, "
|
| 167 |
+
f"logits_real: {logits_real:.4f}, logits_fake: {logits_fake:.4f}")
|
| 168 |
+
return d_adversarial_loss
|
tokenizer/tokenizer_image/vq_model.py
ADDED
|
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# taming-transformers: https://github.com/CompVis/taming-transformers
|
| 3 |
+
# maskgit: https://github.com/google-research/maskgit
|
| 4 |
+
from dataclasses import dataclass, field
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class ModelArgs:
|
| 14 |
+
codebook_size: int = 16384
|
| 15 |
+
codebook_embed_dim: int = 8
|
| 16 |
+
codebook_l2_norm: bool = True
|
| 17 |
+
codebook_show_usage: bool = True
|
| 18 |
+
commit_loss_beta: float = 0.25
|
| 19 |
+
entropy_loss_ratio: float = 0.0
|
| 20 |
+
|
| 21 |
+
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
| 22 |
+
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
| 23 |
+
z_channels: int = 256
|
| 24 |
+
dropout_p: float = 0.0
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class VQModel(nn.Module):
|
| 29 |
+
def __init__(self, config: ModelArgs):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.config = config
|
| 32 |
+
self.encoder = Encoder(ch_mult=config.encoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
| 33 |
+
self.decoder = Decoder(ch_mult=config.decoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
| 34 |
+
|
| 35 |
+
self.quantize = VectorQuantizer(config.codebook_size, config.codebook_embed_dim,
|
| 36 |
+
config.commit_loss_beta, config.entropy_loss_ratio,
|
| 37 |
+
config.codebook_l2_norm, config.codebook_show_usage)
|
| 38 |
+
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
|
| 39 |
+
self.post_quant_conv = nn.Conv2d(config.codebook_embed_dim, config.z_channels, 1)
|
| 40 |
+
|
| 41 |
+
def encode(self, x):
|
| 42 |
+
#import pdb; pdb.set_trace()
|
| 43 |
+
h = self.encoder(x)
|
| 44 |
+
h = self.quant_conv(h)
|
| 45 |
+
quant, emb_loss, info = self.quantize(h)
|
| 46 |
+
return quant, emb_loss, info
|
| 47 |
+
|
| 48 |
+
def decode(self, quant):
|
| 49 |
+
quant = self.post_quant_conv(quant)
|
| 50 |
+
dec = self.decoder(quant)
|
| 51 |
+
return dec
|
| 52 |
+
|
| 53 |
+
def decode_code(self, code_b, shape=None, channel_first=True):
|
| 54 |
+
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
|
| 55 |
+
dec = self.decode(quant_b)
|
| 56 |
+
return dec
|
| 57 |
+
|
| 58 |
+
def forward(self, input):
|
| 59 |
+
quant, diff, _ = self.encode(input)
|
| 60 |
+
dec = self.decode(quant)
|
| 61 |
+
return dec, diff
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Encoder(nn.Module):
|
| 66 |
+
def __init__(self, in_channels=3, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2,
|
| 67 |
+
norm_type='group', dropout=0.0, resamp_with_conv=True, z_channels=256):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.num_resolutions = len(ch_mult)
|
| 70 |
+
self.num_res_blocks = num_res_blocks
|
| 71 |
+
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
|
| 72 |
+
|
| 73 |
+
# downsampling
|
| 74 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 75 |
+
self.conv_blocks = nn.ModuleList()
|
| 76 |
+
for i_level in range(self.num_resolutions):
|
| 77 |
+
conv_block = nn.Module()
|
| 78 |
+
# res & attn
|
| 79 |
+
res_block = nn.ModuleList()
|
| 80 |
+
attn_block = nn.ModuleList()
|
| 81 |
+
block_in = ch*in_ch_mult[i_level]
|
| 82 |
+
block_out = ch*ch_mult[i_level]
|
| 83 |
+
for _ in range(self.num_res_blocks):
|
| 84 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
| 85 |
+
block_in = block_out
|
| 86 |
+
if i_level == self.num_resolutions - 1:
|
| 87 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
| 88 |
+
conv_block.res = res_block
|
| 89 |
+
conv_block.attn = attn_block
|
| 90 |
+
# downsample
|
| 91 |
+
if i_level != self.num_resolutions-1:
|
| 92 |
+
conv_block.downsample = Downsample(block_in, resamp_with_conv)
|
| 93 |
+
self.conv_blocks.append(conv_block)
|
| 94 |
+
|
| 95 |
+
# middle
|
| 96 |
+
self.mid = nn.ModuleList()
|
| 97 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 98 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
| 99 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 100 |
+
|
| 101 |
+
# end
|
| 102 |
+
self.norm_out = Normalize(block_in, norm_type)
|
| 103 |
+
self.conv_out = nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
h = self.conv_in(x)
|
| 108 |
+
# downsampling
|
| 109 |
+
for i_level, block in enumerate(self.conv_blocks):
|
| 110 |
+
for i_block in range(self.num_res_blocks):
|
| 111 |
+
h = block.res[i_block](h)
|
| 112 |
+
if len(block.attn) > 0:
|
| 113 |
+
h = block.attn[i_block](h)
|
| 114 |
+
if i_level != self.num_resolutions - 1:
|
| 115 |
+
h = block.downsample(h)
|
| 116 |
+
|
| 117 |
+
# middle
|
| 118 |
+
for mid_block in self.mid:
|
| 119 |
+
h = mid_block(h)
|
| 120 |
+
|
| 121 |
+
# end
|
| 122 |
+
h = self.norm_out(h)
|
| 123 |
+
h = nonlinearity(h)
|
| 124 |
+
h = self.conv_out(h)
|
| 125 |
+
return h
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class Decoder(nn.Module):
|
| 130 |
+
def __init__(self, z_channels=256, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2, norm_type="group",
|
| 131 |
+
dropout=0.0, resamp_with_conv=True, out_channels=3):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.num_resolutions = len(ch_mult)
|
| 134 |
+
self.num_res_blocks = num_res_blocks
|
| 135 |
+
|
| 136 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 137 |
+
# z to block_in
|
| 138 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
| 139 |
+
|
| 140 |
+
# middle
|
| 141 |
+
self.mid = nn.ModuleList()
|
| 142 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 143 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
| 144 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
| 145 |
+
|
| 146 |
+
# upsampling
|
| 147 |
+
self.conv_blocks = nn.ModuleList()
|
| 148 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 149 |
+
conv_block = nn.Module()
|
| 150 |
+
# res & attn
|
| 151 |
+
res_block = nn.ModuleList()
|
| 152 |
+
attn_block = nn.ModuleList()
|
| 153 |
+
block_out = ch*ch_mult[i_level]
|
| 154 |
+
for _ in range(self.num_res_blocks + 1):
|
| 155 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
| 156 |
+
block_in = block_out
|
| 157 |
+
if i_level == self.num_resolutions - 1:
|
| 158 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
| 159 |
+
conv_block.res = res_block
|
| 160 |
+
conv_block.attn = attn_block
|
| 161 |
+
# downsample
|
| 162 |
+
if i_level != 0:
|
| 163 |
+
conv_block.upsample = Upsample(block_in, resamp_with_conv)
|
| 164 |
+
self.conv_blocks.append(conv_block)
|
| 165 |
+
|
| 166 |
+
# end
|
| 167 |
+
self.norm_out = Normalize(block_in, norm_type)
|
| 168 |
+
self.conv_out = nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)
|
| 169 |
+
|
| 170 |
+
@property
|
| 171 |
+
def last_layer(self):
|
| 172 |
+
return self.conv_out.weight
|
| 173 |
+
|
| 174 |
+
def forward(self, z):
|
| 175 |
+
# z to block_in
|
| 176 |
+
h = self.conv_in(z)
|
| 177 |
+
|
| 178 |
+
# middle
|
| 179 |
+
for mid_block in self.mid:
|
| 180 |
+
h = mid_block(h)
|
| 181 |
+
|
| 182 |
+
# upsampling
|
| 183 |
+
for i_level, block in enumerate(self.conv_blocks):
|
| 184 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 185 |
+
h = block.res[i_block](h)
|
| 186 |
+
if len(block.attn) > 0:
|
| 187 |
+
h = block.attn[i_block](h)
|
| 188 |
+
if i_level != self.num_resolutions - 1:
|
| 189 |
+
h = block.upsample(h)
|
| 190 |
+
|
| 191 |
+
# end
|
| 192 |
+
h = self.norm_out(h)
|
| 193 |
+
h = nonlinearity(h)
|
| 194 |
+
h = self.conv_out(h)
|
| 195 |
+
return h
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class VectorQuantizer(nn.Module):
|
| 199 |
+
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
|
| 200 |
+
super().__init__()
|
| 201 |
+
self.n_e = n_e
|
| 202 |
+
self.e_dim = e_dim
|
| 203 |
+
self.beta = beta
|
| 204 |
+
self.entropy_loss_ratio = entropy_loss_ratio
|
| 205 |
+
self.l2_norm = l2_norm
|
| 206 |
+
self.show_usage = show_usage
|
| 207 |
+
|
| 208 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 209 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 210 |
+
if self.l2_norm:
|
| 211 |
+
self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
|
| 212 |
+
if self.show_usage:
|
| 213 |
+
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def forward(self, z):
|
| 217 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 218 |
+
z = torch.einsum('b c h w -> b h w c', z).contiguous()
|
| 219 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 220 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 221 |
+
|
| 222 |
+
if self.l2_norm:
|
| 223 |
+
z = F.normalize(z, p=2, dim=-1)
|
| 224 |
+
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
|
| 225 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
| 226 |
+
else:
|
| 227 |
+
embedding = self.embedding.weight
|
| 228 |
+
|
| 229 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
| 230 |
+
torch.sum(embedding**2, dim=1) - 2 * \
|
| 231 |
+
torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
|
| 232 |
+
|
| 233 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
| 234 |
+
z_q = embedding[min_encoding_indices].view(z.shape)
|
| 235 |
+
perplexity = None
|
| 236 |
+
min_encodings = None
|
| 237 |
+
vq_loss = None
|
| 238 |
+
commit_loss = None
|
| 239 |
+
entropy_loss = None
|
| 240 |
+
codebook_usage = 0
|
| 241 |
+
|
| 242 |
+
if self.show_usage and self.training:
|
| 243 |
+
cur_len = min_encoding_indices.shape[0]
|
| 244 |
+
self.codebook_used[:-cur_len] = self.codebook_used[cur_len:].clone()
|
| 245 |
+
self.codebook_used[-cur_len:] = min_encoding_indices
|
| 246 |
+
codebook_usage = len(torch.unique(self.codebook_used)) / self.n_e
|
| 247 |
+
|
| 248 |
+
# compute loss for embedding
|
| 249 |
+
if self.training:
|
| 250 |
+
vq_loss = torch.mean((z_q - z.detach()) ** 2)
|
| 251 |
+
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
|
| 252 |
+
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
|
| 253 |
+
|
| 254 |
+
# preserve gradients
|
| 255 |
+
z_q = z + (z_q - z).detach()
|
| 256 |
+
|
| 257 |
+
# reshape back to match original input shape
|
| 258 |
+
z_q = torch.einsum('b h w c -> b c h w', z_q)
|
| 259 |
+
|
| 260 |
+
return z_q, (vq_loss, commit_loss, entropy_loss, codebook_usage), (perplexity, min_encodings, min_encoding_indices)
|
| 261 |
+
|
| 262 |
+
def get_codebook_entry(self, indices, shape=None, channel_first=True):
|
| 263 |
+
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
|
| 264 |
+
if self.l2_norm:
|
| 265 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
| 266 |
+
else:
|
| 267 |
+
embedding = self.embedding.weight
|
| 268 |
+
z_q = embedding[indices] # (b*h*w, c)
|
| 269 |
+
|
| 270 |
+
if shape is not None:
|
| 271 |
+
if channel_first:
|
| 272 |
+
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
|
| 273 |
+
# reshape back to match original input shape
|
| 274 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 275 |
+
else:
|
| 276 |
+
z_q = z_q.view(shape)
|
| 277 |
+
return z_q
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class ResnetBlock(nn.Module):
|
| 281 |
+
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group'):
|
| 282 |
+
super().__init__()
|
| 283 |
+
self.in_channels = in_channels
|
| 284 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 285 |
+
self.out_channels = out_channels
|
| 286 |
+
self.use_conv_shortcut = conv_shortcut
|
| 287 |
+
|
| 288 |
+
self.norm1 = Normalize(in_channels, norm_type)
|
| 289 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 290 |
+
self.norm2 = Normalize(out_channels, norm_type)
|
| 291 |
+
self.dropout = nn.Dropout(dropout)
|
| 292 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 293 |
+
|
| 294 |
+
if self.in_channels != self.out_channels:
|
| 295 |
+
if self.use_conv_shortcut:
|
| 296 |
+
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 297 |
+
else:
|
| 298 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 299 |
+
|
| 300 |
+
def forward(self, x):
|
| 301 |
+
h = x
|
| 302 |
+
h = self.norm1(h)
|
| 303 |
+
h = nonlinearity(h)
|
| 304 |
+
h = self.conv1(h)
|
| 305 |
+
h = self.norm2(h)
|
| 306 |
+
h = nonlinearity(h)
|
| 307 |
+
h = self.dropout(h)
|
| 308 |
+
h = self.conv2(h)
|
| 309 |
+
|
| 310 |
+
if self.in_channels != self.out_channels:
|
| 311 |
+
if self.use_conv_shortcut:
|
| 312 |
+
x = self.conv_shortcut(x)
|
| 313 |
+
else:
|
| 314 |
+
x = self.nin_shortcut(x)
|
| 315 |
+
return x+h
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class AttnBlock(nn.Module):
|
| 319 |
+
def __init__(self, in_channels, norm_type='group'):
|
| 320 |
+
super().__init__()
|
| 321 |
+
self.norm = Normalize(in_channels, norm_type)
|
| 322 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 323 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 324 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 325 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def forward(self, x):
|
| 329 |
+
h_ = x
|
| 330 |
+
h_ = self.norm(h_)
|
| 331 |
+
q = self.q(h_)
|
| 332 |
+
k = self.k(h_)
|
| 333 |
+
v = self.v(h_)
|
| 334 |
+
|
| 335 |
+
# compute attention
|
| 336 |
+
b,c,h,w = q.shape
|
| 337 |
+
q = q.reshape(b,c,h*w)
|
| 338 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 339 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 340 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 341 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 342 |
+
w_ = F.softmax(w_, dim=2)
|
| 343 |
+
|
| 344 |
+
# attend to values
|
| 345 |
+
v = v.reshape(b,c,h*w)
|
| 346 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 347 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 348 |
+
h_ = h_.reshape(b,c,h,w)
|
| 349 |
+
|
| 350 |
+
h_ = self.proj_out(h_)
|
| 351 |
+
|
| 352 |
+
return x+h_
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def nonlinearity(x):
|
| 356 |
+
# swish
|
| 357 |
+
return x*torch.sigmoid(x)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def Normalize(in_channels, norm_type='group'):
|
| 361 |
+
assert norm_type in ['group', 'batch']
|
| 362 |
+
if norm_type == 'group':
|
| 363 |
+
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 364 |
+
elif norm_type == 'batch':
|
| 365 |
+
return nn.SyncBatchNorm(in_channels)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class Upsample(nn.Module):
|
| 369 |
+
def __init__(self, in_channels, with_conv):
|
| 370 |
+
super().__init__()
|
| 371 |
+
self.with_conv = with_conv
|
| 372 |
+
if self.with_conv:
|
| 373 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
| 374 |
+
|
| 375 |
+
def forward(self, x):
|
| 376 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 377 |
+
if self.with_conv:
|
| 378 |
+
x = self.conv(x)
|
| 379 |
+
return x
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
class Downsample(nn.Module):
|
| 383 |
+
def __init__(self, in_channels, with_conv):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.with_conv = with_conv
|
| 386 |
+
if self.with_conv:
|
| 387 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 388 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 389 |
+
|
| 390 |
+
def forward(self, x):
|
| 391 |
+
if self.with_conv:
|
| 392 |
+
pad = (0,1,0,1)
|
| 393 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
| 394 |
+
x = self.conv(x)
|
| 395 |
+
else:
|
| 396 |
+
x = F.avg_pool2d(x, kernel_size=2, stride=2)
|
| 397 |
+
return x
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
|
| 401 |
+
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
|
| 402 |
+
flat_affinity /= temperature
|
| 403 |
+
probs = F.softmax(flat_affinity, dim=-1)
|
| 404 |
+
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
|
| 405 |
+
if loss_type == "softmax":
|
| 406 |
+
target_probs = probs
|
| 407 |
+
else:
|
| 408 |
+
raise ValueError("Entropy loss {} not supported".format(loss_type))
|
| 409 |
+
avg_probs = torch.mean(target_probs, dim=0)
|
| 410 |
+
avg_entropy = - torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
|
| 411 |
+
sample_entropy = - torch.mean(torch.sum(target_probs * log_probs, dim=-1))
|
| 412 |
+
loss = sample_entropy - avg_entropy
|
| 413 |
+
return loss
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
#################################################################################
|
| 417 |
+
# VQ Model Configs #
|
| 418 |
+
#################################################################################
|
| 419 |
+
def VQ_8(**kwargs):
|
| 420 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 2, 2, 4], decoder_ch_mult=[1, 2, 2, 4], **kwargs))
|
| 421 |
+
|
| 422 |
+
def VQ_16(**kwargs):
|
| 423 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs))
|
| 424 |
+
|
| 425 |
+
VQ_models = {'VQ-16': VQ_16, 'VQ-8': VQ_8}
|
tokenizer/vae/README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## VAE Models from Stable Diffusion
|
| 2 |
+
|
| 3 |
+
### install
|
| 4 |
+
```
|
| 5 |
+
pip install diffusers
|
| 6 |
+
pip install accelerate
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
### demo
|
| 10 |
+
```
|
| 11 |
+
cd ${THIS_REPO_ROOT}
|
| 12 |
+
python3 tokenizer/vae/sd_vae_demo.py
|
| 13 |
+
```
|
| 14 |
+
|
tokenizer/vae/reconstruction_vae_ddp.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 7 |
+
from torchvision.datasets import ImageFolder
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
import itertools
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import numpy as np
|
| 14 |
+
import argparse
|
| 15 |
+
import random
|
| 16 |
+
|
| 17 |
+
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
|
| 18 |
+
from skimage.metrics import structural_similarity as ssim_loss
|
| 19 |
+
from diffusers.models import AutoencoderKL
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SingleFolderDataset(Dataset):
|
| 23 |
+
def __init__(self, directory, transform=None):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.directory = directory
|
| 26 |
+
self.transform = transform
|
| 27 |
+
self.image_paths = [os.path.join(directory, file_name) for file_name in os.listdir(directory)
|
| 28 |
+
if os.path.isfile(os.path.join(directory, file_name))]
|
| 29 |
+
|
| 30 |
+
def __len__(self):
|
| 31 |
+
return len(self.image_paths)
|
| 32 |
+
|
| 33 |
+
def __getitem__(self, idx):
|
| 34 |
+
image_path = self.image_paths[idx]
|
| 35 |
+
image = Image.open(image_path).convert('RGB')
|
| 36 |
+
if self.transform:
|
| 37 |
+
image = self.transform(image)
|
| 38 |
+
return image, torch.tensor(0)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 42 |
+
"""
|
| 43 |
+
Builds a single .npz file from a folder of .png samples.
|
| 44 |
+
"""
|
| 45 |
+
samples = []
|
| 46 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 47 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 48 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 49 |
+
samples.append(sample_np)
|
| 50 |
+
|
| 51 |
+
random.shuffle(samples) # This is very important for IS(Inception Score) !!!
|
| 52 |
+
samples = np.stack(samples)
|
| 53 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 54 |
+
npz_path = f"{sample_dir}.npz"
|
| 55 |
+
np.savez(npz_path, arr_0=samples)
|
| 56 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 57 |
+
return npz_path
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def center_crop_arr(pil_image, image_size):
|
| 61 |
+
"""
|
| 62 |
+
Center cropping implementation from ADM.
|
| 63 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
| 64 |
+
"""
|
| 65 |
+
while min(*pil_image.size) >= 2 * image_size:
|
| 66 |
+
pil_image = pil_image.resize(
|
| 67 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
scale = image_size / min(*pil_image.size)
|
| 71 |
+
pil_image = pil_image.resize(
|
| 72 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
arr = np.array(pil_image)
|
| 76 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
| 77 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
| 78 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def main(args):
|
| 82 |
+
# Setup PyTorch:
|
| 83 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 84 |
+
torch.set_grad_enabled(False)
|
| 85 |
+
|
| 86 |
+
# Setup DDP:
|
| 87 |
+
dist.init_process_group("nccl")
|
| 88 |
+
rank = dist.get_rank()
|
| 89 |
+
device = rank % torch.cuda.device_count()
|
| 90 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 91 |
+
torch.manual_seed(seed)
|
| 92 |
+
torch.cuda.set_device(device)
|
| 93 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 94 |
+
|
| 95 |
+
# load vae
|
| 96 |
+
vae = AutoencoderKL.from_pretrained(f"stabilityai/{args.vae}").to(device)
|
| 97 |
+
|
| 98 |
+
# Create folder to save samples:
|
| 99 |
+
folder_name = f"stabilityai-{args.vae}-{args.dataset}-size-{args.image_size}-seed-{args.global_seed}"
|
| 100 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 101 |
+
if rank == 0:
|
| 102 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 103 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 104 |
+
dist.barrier()
|
| 105 |
+
|
| 106 |
+
# Setup data:
|
| 107 |
+
transform = transforms.Compose([
|
| 108 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 109 |
+
transforms.ToTensor(),
|
| 110 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 111 |
+
])
|
| 112 |
+
if args.dataset == 'imagenet':
|
| 113 |
+
dataset = ImageFolder(args.data_path, transform=transform)
|
| 114 |
+
num_fid_samples = 50000
|
| 115 |
+
elif args.dataset == 'coco':
|
| 116 |
+
dataset = SingleFolderDataset(args.data_path, transform=transform)
|
| 117 |
+
num_fid_samples = 5000
|
| 118 |
+
else:
|
| 119 |
+
raise Exception("please check dataset")
|
| 120 |
+
|
| 121 |
+
sampler = DistributedSampler(
|
| 122 |
+
dataset,
|
| 123 |
+
num_replicas=dist.get_world_size(),
|
| 124 |
+
rank=rank,
|
| 125 |
+
shuffle=False,
|
| 126 |
+
seed=args.global_seed
|
| 127 |
+
)
|
| 128 |
+
loader = DataLoader(
|
| 129 |
+
dataset,
|
| 130 |
+
batch_size=args.per_proc_batch_size,
|
| 131 |
+
shuffle=False,
|
| 132 |
+
sampler=sampler,
|
| 133 |
+
num_workers=args.num_workers,
|
| 134 |
+
pin_memory=True,
|
| 135 |
+
drop_last=False
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 139 |
+
n = args.per_proc_batch_size
|
| 140 |
+
global_batch_size = n * dist.get_world_size()
|
| 141 |
+
|
| 142 |
+
psnr_val_rgb = []
|
| 143 |
+
ssim_val_rgb = []
|
| 144 |
+
loader = tqdm(loader) if rank == 0 else loader
|
| 145 |
+
total = 0
|
| 146 |
+
for x, _ in loader:
|
| 147 |
+
rgb_gts = x
|
| 148 |
+
rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
|
| 149 |
+
x = x.to(device)
|
| 150 |
+
with torch.no_grad():
|
| 151 |
+
# Map input images to latent space + normalize latents:
|
| 152 |
+
latent = vae.encode(x).latent_dist.sample().mul_(0.18215)
|
| 153 |
+
# reconstruct:
|
| 154 |
+
samples = vae.decode(latent / 0.18215).sample # output value is between [-1, 1]
|
| 155 |
+
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 156 |
+
|
| 157 |
+
# Save samples to disk as individual .png files
|
| 158 |
+
for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
|
| 159 |
+
index = i * dist.get_world_size() + rank + total
|
| 160 |
+
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
|
| 161 |
+
# metric
|
| 162 |
+
rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
|
| 163 |
+
psnr = psnr_loss(rgb_restored, rgb_gt)
|
| 164 |
+
ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
|
| 165 |
+
psnr_val_rgb.append(psnr)
|
| 166 |
+
ssim_val_rgb.append(ssim)
|
| 167 |
+
total += global_batch_size
|
| 168 |
+
|
| 169 |
+
# ------------------------------------
|
| 170 |
+
# Summary
|
| 171 |
+
# ------------------------------------
|
| 172 |
+
# Make sure all processes have finished saving their samples
|
| 173 |
+
dist.barrier()
|
| 174 |
+
world_size = dist.get_world_size()
|
| 175 |
+
gather_psnr_val = [None for _ in range(world_size)]
|
| 176 |
+
gather_ssim_val = [None for _ in range(world_size)]
|
| 177 |
+
dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
|
| 178 |
+
dist.all_gather_object(gather_ssim_val, ssim_val_rgb)
|
| 179 |
+
|
| 180 |
+
if rank == 0:
|
| 181 |
+
gather_psnr_val = list(itertools.chain(*gather_psnr_val))
|
| 182 |
+
gather_ssim_val = list(itertools.chain(*gather_ssim_val))
|
| 183 |
+
psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
|
| 184 |
+
ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
|
| 185 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
|
| 186 |
+
|
| 187 |
+
result_file = f"{sample_folder_dir}_results.txt"
|
| 188 |
+
print("writing results to {}".format(result_file))
|
| 189 |
+
with open(result_file, 'w') as f:
|
| 190 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)
|
| 191 |
+
|
| 192 |
+
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
|
| 193 |
+
print("Done.")
|
| 194 |
+
|
| 195 |
+
dist.barrier()
|
| 196 |
+
dist.destroy_process_group()
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
parser = argparse.ArgumentParser()
|
| 201 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 202 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco'], default='imagenet')
|
| 203 |
+
parser.add_argument("--vae", type=str, choices=["sdxl-vae", "sd-vae-ft-mse"], default="sd-vae-ft-mse")
|
| 204 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
| 205 |
+
parser.add_argument("--sample-dir", type=str, default="reconstructions")
|
| 206 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 207 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 208 |
+
parser.add_argument("--num-workers", type=int, default=4)
|
| 209 |
+
args = parser.parse_args()
|
| 210 |
+
main(args)
|
tokenizer/vae/sd_vae_demo.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from diffusers.models import AutoencoderKL
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def main(args):
|
| 10 |
+
# Setup PyTorch:
|
| 11 |
+
torch.manual_seed(args.seed)
|
| 12 |
+
torch.set_grad_enabled(False)
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
|
| 15 |
+
# create and load model
|
| 16 |
+
vae = AutoencoderKL.from_pretrained(f"stabilityai/{args.vae}").to(device)
|
| 17 |
+
|
| 18 |
+
# load image
|
| 19 |
+
img_path = args.image_path
|
| 20 |
+
out_path = args.image_path.replace('.jpg', '_vae.jpg').replace('.jpeg', '_vae.jpeg').replace('.png', '_vae.png')
|
| 21 |
+
input_size = args.image_size
|
| 22 |
+
img = Image.open(img_path).convert("RGB")
|
| 23 |
+
|
| 24 |
+
# preprocess
|
| 25 |
+
size_org = img.size
|
| 26 |
+
img = img.resize((input_size, input_size))
|
| 27 |
+
img = np.array(img) / 255.
|
| 28 |
+
x = 2.0 * img - 1.0 # x value is between [-1, 1]
|
| 29 |
+
x = torch.tensor(x)
|
| 30 |
+
x = x.unsqueeze(dim=0)
|
| 31 |
+
x = torch.einsum('nhwc->nchw', x)
|
| 32 |
+
x_input = x.float().to("cuda")
|
| 33 |
+
|
| 34 |
+
# inference
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
# Map input images to latent space + normalize latents:
|
| 37 |
+
latent = vae.encode(x_input).latent_dist.sample().mul_(0.18215)
|
| 38 |
+
# reconstruct:
|
| 39 |
+
output = vae.decode(latent / 0.18215).sample # output value is between [-1, 1]
|
| 40 |
+
|
| 41 |
+
# postprocess
|
| 42 |
+
output = F.interpolate(output, size=[size_org[1], size_org[0]], mode='bilinear').permute(0, 2, 3, 1)[0]
|
| 43 |
+
sample = torch.clamp(127.5 * output + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
|
| 44 |
+
|
| 45 |
+
# save
|
| 46 |
+
Image.fromarray(sample).save(out_path)
|
| 47 |
+
print("Reconstructed image is saved to {}".format(out_path))
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
if __name__ == "__main__":
|
| 51 |
+
parser = argparse.ArgumentParser()
|
| 52 |
+
parser.add_argument("--image-path", type=str, default="assets/example.jpg")
|
| 53 |
+
parser.add_argument("--vae", type=str, choices=["sdxl-vae", "sd-vae-ft-mse"], default="sd-vae-ft-mse")
|
| 54 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512, 1024], default=512)
|
| 55 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 56 |
+
args = parser.parse_args()
|
| 57 |
+
main(args)
|
tokenizer/validation/val_ddp.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 7 |
+
from torchvision.datasets import ImageFolder
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import numpy as np
|
| 13 |
+
import argparse
|
| 14 |
+
import random
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class SingleFolderDataset(Dataset):
|
| 18 |
+
def __init__(self, directory, transform=None):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.directory = directory
|
| 21 |
+
self.transform = transform
|
| 22 |
+
self.image_paths = [os.path.join(directory, file_name) for file_name in os.listdir(directory)
|
| 23 |
+
if os.path.isfile(os.path.join(directory, file_name))]
|
| 24 |
+
|
| 25 |
+
def __len__(self):
|
| 26 |
+
return len(self.image_paths)
|
| 27 |
+
|
| 28 |
+
def __getitem__(self, idx):
|
| 29 |
+
image_path = self.image_paths[idx]
|
| 30 |
+
image = Image.open(image_path).convert('RGB')
|
| 31 |
+
if self.transform:
|
| 32 |
+
image = self.transform(image)
|
| 33 |
+
return image, torch.tensor(0)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 37 |
+
"""
|
| 38 |
+
Builds a single .npz file from a folder of .png samples.
|
| 39 |
+
"""
|
| 40 |
+
samples = []
|
| 41 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 42 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 43 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 44 |
+
samples.append(sample_np)
|
| 45 |
+
|
| 46 |
+
random.shuffle(samples) # This is very important for IS(Inception Score) !!!
|
| 47 |
+
samples = np.stack(samples)
|
| 48 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 49 |
+
npz_path = f"{sample_dir}.npz"
|
| 50 |
+
np.savez(npz_path, arr_0=samples)
|
| 51 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 52 |
+
return npz_path
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def center_crop_arr(pil_image, image_size):
|
| 56 |
+
"""
|
| 57 |
+
Center cropping implementation from ADM.
|
| 58 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
| 59 |
+
"""
|
| 60 |
+
while min(*pil_image.size) >= 2 * image_size:
|
| 61 |
+
pil_image = pil_image.resize(
|
| 62 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
scale = image_size / min(*pil_image.size)
|
| 66 |
+
pil_image = pil_image.resize(
|
| 67 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
arr = np.array(pil_image)
|
| 71 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
| 72 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
| 73 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def main(args):
|
| 77 |
+
# Setup PyTorch:
|
| 78 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 79 |
+
torch.set_grad_enabled(False)
|
| 80 |
+
|
| 81 |
+
# Setup env
|
| 82 |
+
dist.init_process_group("nccl")
|
| 83 |
+
rank = dist.get_rank()
|
| 84 |
+
device = rank % torch.cuda.device_count()
|
| 85 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 86 |
+
torch.manual_seed(seed)
|
| 87 |
+
torch.cuda.set_device(device)
|
| 88 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 89 |
+
|
| 90 |
+
# Create folder to save samples:
|
| 91 |
+
folder_name = f"val_{args.dataset}"
|
| 92 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 93 |
+
if rank == 0:
|
| 94 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 95 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 96 |
+
dist.barrier()
|
| 97 |
+
|
| 98 |
+
# Setup data:
|
| 99 |
+
transform = transforms.Compose([
|
| 100 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 101 |
+
transforms.ToTensor(),
|
| 102 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 103 |
+
])
|
| 104 |
+
|
| 105 |
+
if args.dataset == 'imagenet':
|
| 106 |
+
dataset = ImageFolder(args.data_path, transform=transform)
|
| 107 |
+
num_fid_samples = 50000
|
| 108 |
+
elif args.dataset == 'coco':
|
| 109 |
+
dataset = SingleFolderDataset(args.data_path, transform=transform)
|
| 110 |
+
num_fid_samples = 5000
|
| 111 |
+
else:
|
| 112 |
+
raise Exception("please check dataset")
|
| 113 |
+
|
| 114 |
+
sampler = DistributedSampler(
|
| 115 |
+
dataset,
|
| 116 |
+
num_replicas=dist.get_world_size(),
|
| 117 |
+
rank=rank,
|
| 118 |
+
shuffle=False,
|
| 119 |
+
seed=args.global_seed
|
| 120 |
+
)
|
| 121 |
+
loader = DataLoader(
|
| 122 |
+
dataset,
|
| 123 |
+
batch_size=args.per_proc_batch_size,
|
| 124 |
+
shuffle=False,
|
| 125 |
+
sampler=sampler,
|
| 126 |
+
num_workers=args.num_workers,
|
| 127 |
+
pin_memory=True,
|
| 128 |
+
drop_last=False
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 132 |
+
n = args.per_proc_batch_size
|
| 133 |
+
global_batch_size = n * dist.get_world_size()
|
| 134 |
+
|
| 135 |
+
loader = tqdm(loader) if rank == 0 else loader
|
| 136 |
+
total = 0
|
| 137 |
+
for x, _ in loader:
|
| 138 |
+
samples = torch.clamp(127.5 * x + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 139 |
+
# Save samples to disk as individual .png files
|
| 140 |
+
for i, sample in enumerate(samples):
|
| 141 |
+
index = i * dist.get_world_size() + rank + total
|
| 142 |
+
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
|
| 143 |
+
|
| 144 |
+
total += global_batch_size
|
| 145 |
+
|
| 146 |
+
# Make sure all processes have finished saving their samples before attempting to convert to .npz
|
| 147 |
+
dist.barrier()
|
| 148 |
+
if rank == 0:
|
| 149 |
+
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
|
| 150 |
+
print("Done.")
|
| 151 |
+
dist.barrier()
|
| 152 |
+
dist.destroy_process_group()
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
if __name__ == "__main__":
|
| 156 |
+
parser = argparse.ArgumentParser()
|
| 157 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 158 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco'], default='imagenet')
|
| 159 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
| 160 |
+
parser.add_argument("--sample-dir", type=str, default="reconstructions")
|
| 161 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 162 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 163 |
+
parser.add_argument("--num-workers", type=int, default=4)
|
| 164 |
+
args = parser.parse_args()
|
| 165 |
+
main(args)
|
tools/openimage_json.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import multiprocessing as mp
|
| 6 |
+
|
| 7 |
+
import warnings
|
| 8 |
+
warnings.filterwarnings('ignore')
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def check_image(image_path):
|
| 12 |
+
try:
|
| 13 |
+
Image.open(image_path)
|
| 14 |
+
return True
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"Error details: {str(e)}")
|
| 17 |
+
return False
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def check_image_path(image_info):
|
| 21 |
+
data_path, image_path_list = image_info # Unpack the info
|
| 22 |
+
valid_image_paths = []
|
| 23 |
+
for image_path in image_path_list:
|
| 24 |
+
if check_image(os.path.join(data_path, image_path)):
|
| 25 |
+
valid_image_paths.append(image_path)
|
| 26 |
+
return valid_image_paths
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def load_image_path(image_info):
|
| 30 |
+
folder_name, data_path, image_extensions = image_info # Unpack the info
|
| 31 |
+
print(folder_name)
|
| 32 |
+
|
| 33 |
+
folder_path = os.path.join(data_path, folder_name)
|
| 34 |
+
local_image_paths = []
|
| 35 |
+
for image_path in os.listdir(folder_path):
|
| 36 |
+
_, file_extension = os.path.splitext(image_path)
|
| 37 |
+
if file_extension.lower() in image_extensions:
|
| 38 |
+
image_path_full = os.path.join(folder_name, image_path)
|
| 39 |
+
local_image_paths.append(image_path_full)
|
| 40 |
+
return local_image_paths
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def main(args):
|
| 45 |
+
data_path = args.data_path
|
| 46 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
| 47 |
+
|
| 48 |
+
num_processes = 47
|
| 49 |
+
work_list = [('openimages_{:0>4}'.format(idx), data_path, image_extensions) for idx in range(1, 48)]
|
| 50 |
+
with mp.Pool(processes=num_processes) as pool:
|
| 51 |
+
results = pool.map(load_image_path, work_list)
|
| 52 |
+
image_paths = [image_path for sublist in results for image_path in sublist]
|
| 53 |
+
print('image_paths is loaded')
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
num_processes = max(mp.cpu_count() // 2, 4)
|
| 57 |
+
unit = len(image_paths) // num_processes
|
| 58 |
+
work_list = [(data_path, image_paths[idx*unit:(idx+1)*unit]) for idx in range(num_processes)]
|
| 59 |
+
with mp.Pool(processes=num_processes) as pool:
|
| 60 |
+
results = pool.map(check_image_path, work_list)
|
| 61 |
+
valid_image_paths = [image_path for sublist in results for image_path in sublist]
|
| 62 |
+
print('image_paths is checked')
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
output_json_file_path = os.path.join(data_path, 'image_paths.json')
|
| 66 |
+
with open(output_json_file_path, 'w') as outfile:
|
| 67 |
+
json.dump(valid_image_paths, outfile, indent=4)
|
| 68 |
+
print(f"Image paths have been saved to {output_json_file_path}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
parser = argparse.ArgumentParser()
|
| 73 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 74 |
+
args = parser.parse_args()
|
| 75 |
+
main(args)
|
tools/push_vae_to_hf.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Script to push and load custom PyTorch models to/from the Hugging Face Hub.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import torch
|
| 7 |
+
from tokenizer.tokenizer_image.vq_model_hf import VQ_models_HF, VQModelHF
|
| 8 |
+
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
model2ckpt = {
|
| 13 |
+
"GPT-XL": ("vq_ds16_c2i.pt", "c2i_XL_384.pt", 384),
|
| 14 |
+
"GPT-B": ("vq_ds16_c2i.pt", "c2i_B_256.pt", 256),
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
def load_model(args):
|
| 18 |
+
ckpt_folder = "./"
|
| 19 |
+
vq_ckpt, gpt_ckpt, _ = model2ckpt[args.gpt_model]
|
| 20 |
+
hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=vq_ckpt, local_dir=ckpt_folder)
|
| 21 |
+
hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=gpt_ckpt, local_dir=ckpt_folder)
|
| 22 |
+
# create and load model
|
| 23 |
+
vq_model = VQ_models_HF[args.vq_model](
|
| 24 |
+
codebook_size=args.codebook_size,
|
| 25 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 26 |
+
vq_model.eval()
|
| 27 |
+
checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu")
|
| 28 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 29 |
+
del checkpoint
|
| 30 |
+
print(f"image tokenizer is loaded")
|
| 31 |
+
return vq_model
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
parser = argparse.ArgumentParser()
|
| 35 |
+
parser.add_argument("--gpt-model", type=str, default="GPT-XL")
|
| 36 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models_HF.keys()), default="VQ-16")
|
| 37 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 38 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 39 |
+
args = parser.parse_args()
|
| 40 |
+
|
| 41 |
+
# load weights
|
| 42 |
+
vq_model = load_model(args)
|
| 43 |
+
|
| 44 |
+
# push to hub
|
| 45 |
+
vq_model.push_to_hub("FoundationVision/vq-ds16-c2i")
|
| 46 |
+
|
| 47 |
+
# reload
|
| 48 |
+
model = VQModelHF.from_pretrained("FoundationVision/vq-ds16-c2i")
|
utils/__init__.py
ADDED
|
File without changes
|
utils/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (156 Bytes). View file
|
|
|
utils/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (140 Bytes). View file
|
|
|
utils/__pycache__/distributed.cpython-310.pyc
ADDED
|
Binary file (1.81 kB). View file
|
|
|
utils/__pycache__/distributed.cpython-38.pyc
ADDED
|
Binary file (1.79 kB). View file
|
|
|
utils/deepspeed.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def create_deepspeed_config(args):
|
| 2 |
+
ds_config = {
|
| 3 |
+
"steps_per_print": 1000,
|
| 4 |
+
"train_batch_size": args.global_batch_size,
|
| 5 |
+
"gradient_accumulation_steps": args.gradient_accumulation_steps,
|
| 6 |
+
# "train_micro_batch_size_per_gpu": args.batch_size, # determined by (train_batch_size, gradient_accumulation_steps)
|
| 7 |
+
"optimizer": {
|
| 8 |
+
"type": "Adam",
|
| 9 |
+
"adam_w_mode": True,
|
| 10 |
+
"params": {
|
| 11 |
+
"lr": args.lr,
|
| 12 |
+
"weight_decay": args.weight_decay,
|
| 13 |
+
"bias_correction": True,
|
| 14 |
+
"betas": [
|
| 15 |
+
args.beta1,
|
| 16 |
+
args.beta2
|
| 17 |
+
],
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
"fp16": {
|
| 21 |
+
"enabled": args.mixed_precision == 'fp16',
|
| 22 |
+
"loss_scale": 0,
|
| 23 |
+
"initial_scale_power": 16,
|
| 24 |
+
"loss_scale_window": 1000,
|
| 25 |
+
"hysteresis": 2,
|
| 26 |
+
"min_loss_scale": 1
|
| 27 |
+
},
|
| 28 |
+
"bf16": {
|
| 29 |
+
"enabled": args.mixed_precision == 'bf16',
|
| 30 |
+
},
|
| 31 |
+
# "flops_profiler": {
|
| 32 |
+
# "enabled": True,
|
| 33 |
+
# "profile_step": -1,
|
| 34 |
+
# "module_depth": -1,
|
| 35 |
+
# "top_modules": 1,
|
| 36 |
+
# "detailed": True,
|
| 37 |
+
# },
|
| 38 |
+
"zero_allow_untested_optimizer": True
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
if args.clip_grad is not None:
|
| 42 |
+
ds_config.update({'gradient_clipping': args.clip_grad})
|
| 43 |
+
|
| 44 |
+
if args.zero_stage == 0:
|
| 45 |
+
ds_config.update({"zero_optimization":
|
| 46 |
+
{
|
| 47 |
+
"stage": args.zero_stage,
|
| 48 |
+
"contiguous_gradients": True,
|
| 49 |
+
"overlap_comm": True,
|
| 50 |
+
}
|
| 51 |
+
})
|
| 52 |
+
elif args.zero_stage == 1:
|
| 53 |
+
ds_config.update({"zero_optimization":
|
| 54 |
+
{
|
| 55 |
+
"stage": args.zero_stage,
|
| 56 |
+
"contiguous_gradients": True,
|
| 57 |
+
"overlap_comm": True,
|
| 58 |
+
"reduce_bucket_size": 5e8,
|
| 59 |
+
}
|
| 60 |
+
})
|
| 61 |
+
elif args.zero_stage == 2:
|
| 62 |
+
ds_config.update({"zero_optimization":
|
| 63 |
+
{
|
| 64 |
+
"stage": args.zero_stage,
|
| 65 |
+
"contiguous_gradients": True,
|
| 66 |
+
"overlap_comm": True,
|
| 67 |
+
"reduce_scatter": True,
|
| 68 |
+
"reduce_bucket_size": 5e8,
|
| 69 |
+
"allgather_bucket_size": 5e8,
|
| 70 |
+
}
|
| 71 |
+
})
|
| 72 |
+
elif args.zero_stage == 3:
|
| 73 |
+
ds_config.update({"zero_optimization":
|
| 74 |
+
{
|
| 75 |
+
"stage": args.zero_stage,
|
| 76 |
+
"contiguous_gradients": True,
|
| 77 |
+
"overlap_comm": True,
|
| 78 |
+
"reduce_bucket_size": 5e8,
|
| 79 |
+
"stage3_prefetch_bucket_size": 5e8,
|
| 80 |
+
"stage3_param_persistence_threshold": 1e6,
|
| 81 |
+
"stage3_max_live_parameters": 1e9,
|
| 82 |
+
"stage3_max_reuse_distance": 1e9,
|
| 83 |
+
"stage3_gather_16bit_weights_on_model_save": True
|
| 84 |
+
}
|
| 85 |
+
})
|
| 86 |
+
|
| 87 |
+
return ds_config
|
utils/distributed.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import subprocess
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def setup_for_distributed(is_master):
|
| 7 |
+
"""
|
| 8 |
+
This function disables printing when not in master process
|
| 9 |
+
"""
|
| 10 |
+
import builtins as __builtin__
|
| 11 |
+
builtin_print = __builtin__.print
|
| 12 |
+
|
| 13 |
+
def print(*args, **kwargs):
|
| 14 |
+
force = kwargs.pop('force', False)
|
| 15 |
+
if is_master or force:
|
| 16 |
+
builtin_print(*args, **kwargs)
|
| 17 |
+
|
| 18 |
+
__builtin__.print = print
|
| 19 |
+
|
| 20 |
+
def init_distributed_mode(args):
|
| 21 |
+
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
| 22 |
+
args.rank = int(os.environ["RANK"])
|
| 23 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
| 24 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
| 25 |
+
args.dist_url = 'env://'
|
| 26 |
+
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count())
|
| 27 |
+
elif 'SLURM_PROCID' in os.environ:
|
| 28 |
+
proc_id = int(os.environ['SLURM_PROCID'])
|
| 29 |
+
ntasks = int(os.environ['SLURM_NTASKS'])
|
| 30 |
+
node_list = os.environ['SLURM_NODELIST']
|
| 31 |
+
num_gpus = torch.cuda.device_count()
|
| 32 |
+
addr = subprocess.getoutput(
|
| 33 |
+
'scontrol show hostname {} | head -n1'.format(node_list))
|
| 34 |
+
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29500')
|
| 35 |
+
os.environ['MASTER_ADDR'] = addr
|
| 36 |
+
os.environ['WORLD_SIZE'] = str(ntasks)
|
| 37 |
+
os.environ['RANK'] = str(proc_id)
|
| 38 |
+
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
| 39 |
+
os.environ['LOCAL_SIZE'] = str(num_gpus)
|
| 40 |
+
args.dist_url = 'env://'
|
| 41 |
+
args.world_size = ntasks
|
| 42 |
+
args.rank = proc_id
|
| 43 |
+
args.gpu = proc_id % num_gpus
|
| 44 |
+
else:
|
| 45 |
+
print('Not using distributed mode')
|
| 46 |
+
args.distributed = False
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
args.distributed = True
|
| 50 |
+
|
| 51 |
+
torch.cuda.set_device(args.gpu)
|
| 52 |
+
args.dist_backend = 'nccl'
|
| 53 |
+
print('| distributed init (rank {}): {}'.format(
|
| 54 |
+
args.rank, args.dist_url), flush=True)
|
| 55 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
| 56 |
+
world_size=args.world_size, rank=args.rank)
|
| 57 |
+
torch.distributed.barrier()
|
| 58 |
+
setup_for_distributed(args.rank == 0)
|
utils/drop_path.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from timm.models.layers import DropPath
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
| 5 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 6 |
+
|
| 7 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 8 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 9 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 10 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 11 |
+
'survival rate' as the argument.
|
| 12 |
+
|
| 13 |
+
"""
|
| 14 |
+
if drop_prob == 0. or not training:
|
| 15 |
+
return x
|
| 16 |
+
keep_prob = 1 - drop_prob
|
| 17 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 18 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 19 |
+
if keep_prob > 0.0 and scale_by_keep:
|
| 20 |
+
random_tensor.div_(keep_prob)
|
| 21 |
+
return x * random_tensor
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DropPath(torch.nn.Module):
|
| 25 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 26 |
+
"""
|
| 27 |
+
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
| 28 |
+
super(DropPath, self).__init__()
|
| 29 |
+
self.drop_prob = drop_prob
|
| 30 |
+
self.scale_by_keep = scale_by_keep
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
| 34 |
+
|
| 35 |
+
def extra_repr(self):
|
| 36 |
+
return f'drop_prob={round(self.drop_prob,3):0.3f}'
|
utils/ema.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
|
| 4 |
+
@torch.no_grad()
|
| 5 |
+
def update_ema(ema_model, model, decay=0.9999):
|
| 6 |
+
"""
|
| 7 |
+
Step the EMA model towards the current model.
|
| 8 |
+
"""
|
| 9 |
+
ema_params = OrderedDict(ema_model.named_parameters())
|
| 10 |
+
model_params = OrderedDict(model.named_parameters())
|
| 11 |
+
|
| 12 |
+
for name, param in model_params.items():
|
| 13 |
+
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
|
| 14 |
+
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def requires_grad(model, flag=True):
|
| 18 |
+
"""
|
| 19 |
+
Set requires_grad flag for all parameters in a model.
|
| 20 |
+
"""
|
| 21 |
+
for p in model.parameters():
|
| 22 |
+
p.requires_grad = flag
|
utils/logger.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import torch.distributed as dist
|
| 3 |
+
|
| 4 |
+
def create_logger(logging_dir):
|
| 5 |
+
"""
|
| 6 |
+
Create a logger that writes to a log file and stdout.
|
| 7 |
+
"""
|
| 8 |
+
if dist.get_rank() == 0: # real logger
|
| 9 |
+
logging.basicConfig(
|
| 10 |
+
level=logging.INFO,
|
| 11 |
+
format='[\033[34m%(asctime)s\033[0m] %(message)s',
|
| 12 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
| 13 |
+
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
|
| 14 |
+
)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
else: # dummy logger (does nothing)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
logger.addHandler(logging.NullHandler())
|
| 19 |
+
return logger
|
utils/video.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import skvideo.io
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Shifts src_tf dim to dest dim
|
| 7 |
+
# i.e. shift_dim(x, 1, -1) would be (b, c, t, h, w) -> (b, t, h, w, c)
|
| 8 |
+
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
|
| 9 |
+
n_dims = len(x.shape)
|
| 10 |
+
if src_dim < 0:
|
| 11 |
+
src_dim = n_dims + src_dim
|
| 12 |
+
if dest_dim < 0:
|
| 13 |
+
dest_dim = n_dims + dest_dim
|
| 14 |
+
|
| 15 |
+
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
|
| 16 |
+
|
| 17 |
+
dims = list(range(n_dims))
|
| 18 |
+
del dims[src_dim]
|
| 19 |
+
|
| 20 |
+
permutation = []
|
| 21 |
+
ctr = 0
|
| 22 |
+
for i in range(n_dims):
|
| 23 |
+
if i == dest_dim:
|
| 24 |
+
permutation.append(src_dim)
|
| 25 |
+
else:
|
| 26 |
+
permutation.append(dims[ctr])
|
| 27 |
+
ctr += 1
|
| 28 |
+
x = x.permute(permutation)
|
| 29 |
+
if make_contiguous:
|
| 30 |
+
x = x.contiguous()
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
# reshapes tensor start from dim i (inclusive)
|
| 34 |
+
# to dim j (exclusive) to the desired shape
|
| 35 |
+
# e.g. if x.shape = (b, thw, c) then
|
| 36 |
+
# view_range(x, 1, 2, (t, h, w)) returns
|
| 37 |
+
# x of shape (b, t, h, w, c)
|
| 38 |
+
def view_range(x, i, j, shape):
|
| 39 |
+
shape = tuple(shape)
|
| 40 |
+
|
| 41 |
+
n_dims = len(x.shape)
|
| 42 |
+
if i < 0:
|
| 43 |
+
i = n_dims + i
|
| 44 |
+
|
| 45 |
+
if j is None:
|
| 46 |
+
j = n_dims
|
| 47 |
+
elif j < 0:
|
| 48 |
+
j = n_dims + j
|
| 49 |
+
|
| 50 |
+
assert 0 <= i < j <= n_dims
|
| 51 |
+
|
| 52 |
+
x_shape = x.shape
|
| 53 |
+
target_shape = x_shape[:i] + shape + x_shape[j:]
|
| 54 |
+
return x.view(target_shape)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def tensor_slice(x, begin, size):
|
| 58 |
+
assert all([b >= 0 for b in begin])
|
| 59 |
+
size = [l - b if s == -1 else s
|
| 60 |
+
for s, b, l in zip(size, begin, x.shape)]
|
| 61 |
+
assert all([s >= 0 for s in size])
|
| 62 |
+
|
| 63 |
+
slices = [slice(b, b + s) for b, s in zip(begin, size)]
|
| 64 |
+
return x[slices]
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def save_video_grid(video, fname, nrow=None, fps=5):
|
| 68 |
+
b, c, t, h, w = video.shape
|
| 69 |
+
video = video.permute(0, 2, 3, 4, 1)
|
| 70 |
+
video = (video.cpu().numpy() * 255).astype('uint8')
|
| 71 |
+
|
| 72 |
+
if nrow is None:
|
| 73 |
+
nrow = math.ceil(math.sqrt(b))
|
| 74 |
+
ncol = math.ceil(b / nrow)
|
| 75 |
+
padding = 1
|
| 76 |
+
video_grid = np.zeros((t, (padding + h) * nrow + padding,
|
| 77 |
+
(padding + w) * ncol + padding, c), dtype='uint8')
|
| 78 |
+
for i in range(b):
|
| 79 |
+
r = i // ncol
|
| 80 |
+
c = i % ncol
|
| 81 |
+
|
| 82 |
+
start_r = (padding + h) * r
|
| 83 |
+
start_c = (padding + w) * c
|
| 84 |
+
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]
|
| 85 |
+
|
| 86 |
+
skvideo.io.vwrite(fname, video_grid, inputdict={'-r': '{}'.format(fps)})
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def save_gif_grid(video, file_name, nrow=None, fps=5):
|
| 90 |
+
b, c, t, h, w = video.shape
|
| 91 |
+
video = video.permute(0, 2, 3, 4, 1)
|
| 92 |
+
video = (video.cpu().numpy() * 255).astype('uint8')
|
| 93 |
+
|
| 94 |
+
if nrow is None:
|
| 95 |
+
nrow = math.ceil(math.sqrt(b))
|
| 96 |
+
ncol = math.ceil(b / nrow)
|
| 97 |
+
padding = 1
|
| 98 |
+
video_grid = np.zeros((t, (padding + h) * nrow + padding,
|
| 99 |
+
(padding + w) * ncol + padding, c), dtype='uint8')
|
| 100 |
+
for i in range(b):
|
| 101 |
+
r = i // ncol
|
| 102 |
+
c = i % ncol
|
| 103 |
+
|
| 104 |
+
start_r = (padding + h) * r
|
| 105 |
+
start_c = (padding + w) * c
|
| 106 |
+
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]
|
| 107 |
+
|
| 108 |
+
images = []
|
| 109 |
+
for frame in video_grid:
|
| 110 |
+
images.append(Image.fromarray(frame))
|
| 111 |
+
|
| 112 |
+
# Save the first image and append the rest of the images as frames in the GIF
|
| 113 |
+
images[0].save(file_name, save_all=True, append_images=images[1:], optimize=False, duration=int(1000/fps), loop=0)
|
| 114 |
+
|
| 115 |
+
# The 'duration' parameter defines the display time for each frame in milliseconds
|
| 116 |
+
# The 'loop' parameter defines the number of loops the GIF should make (0 for infinite loop)
|