import os import numpy as np from mmseg.apis import init_model, inference_model, show_result_pyplot#, inference_segmentor import torch from PIL import Image from sklearn.metrics import confusion_matrix from torchmetrics import JaccardIndex def main(): config_file = 'mmsegmentation/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py' checkpoint_file = 'evaluations/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth' # build the model from a config file and a checkpoint file model = init_model(config_file, checkpoint_file, device='cuda:0') # Image and segmentation labels directories img_dir = 'sample/ade20k/visualization' ann_dir = 'sample/ade20k/annotations' # List all image files img_fns = [f for f in sorted(os.listdir(img_dir)) if f.endswith(".png")] # ann_fns = [f for f in sorted(os.listdir(ann_dir)) if f.endswith(".png")] total_mIoU = 0 from tqdm import tqdm i = 0 jaccard_index = JaccardIndex(task="multiclass", num_classes=150) num_classes = 150 conf_matrix = np.zeros((num_classes + 1, num_classes + 1), dtype=np.int64) for img_fn in tqdm(img_fns): i += 1 # if i >= 100: # break # try: img_path = os.path.join(img_dir, img_fn) ann_path = os.path.join(ann_dir, img_fn) result = inference_model(model, img_path) # except Exception as e: # continue # Read ground truth segmentation map gt_semantic_seg = np.array(Image.open(ann_path)) ignore_label = 0 gt = gt_semantic_seg.copy() pred = result.pred_sem_seg.data[0].cpu().numpy().copy()+1 gt[gt == ignore_label] = num_classes conf_matrix += np.bincount( (num_classes + 1) * pred.reshape(-1) + gt.reshape(-1), minlength=conf_matrix.size, ).reshape(conf_matrix.shape) # calculate miou acc = np.full(num_classes, np.nan, dtype=np.float64) iou = np.full(num_classes, np.nan, dtype=np.float64) tp = conf_matrix.diagonal()[:-1].astype(np.float64) pos_gt = np.sum(conf_matrix[:-1, :-1], axis=0).astype(np.float64) pos_pred = np.sum(conf_matrix[:-1, :-1], axis=1).astype(np.float64) acc_valid = pos_gt > 0 acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid] iou_valid = (pos_gt + pos_pred) > 0 union = pos_gt + pos_pred - tp iou[acc_valid] = tp[acc_valid] / union[acc_valid] miou = np.sum(iou[acc_valid]) / np.sum(iou_valid) print(f"mIoU: {miou}") if __name__ == '__main__': main()