import os import argparse import torch from torchvision import transforms from torch.utils.data import DataLoader from PIL import Image from dataset.t2i_control import T2IControlCode from tqdm import tqdm def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--code_path', type=str, required=True, help='根目录,包含 code/control/image/caption_emb 等文件夹') parser.add_argument('--code_path2', type=str, default=None, help='第二组数据路径 (可选)') parser.add_argument('--image_size', type=int, default=512) parser.add_argument('--downsample_size', type=int, default=8) parser.add_argument('--condition_type', type=str, default='seg', choices=['seg', 'depth', 'canny', 'hed', 'lineart'], help='控制类型') parser.add_argument('--get_image', action='store_true', help='是否返回 image') parser.add_argument('--get_prompt', action='store_true', help='是否返回 prompt') parser.add_argument('--get_label', action='store_true', help='是否返回 label') parser.add_argument('--max_show', type=int, default=5, help='最多显示多少条样本') return parser.parse_args() def main(): args = get_args() dataset = T2IControlCode(args) print(f"\n📦 数据集大小: {len(dataset)}") loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=2, collate_fn=dataset.collate_fn) for i, batch in enumerate(tqdm(loader)): print(f"\n🟡 Sample #{i}") print(f" - code shape: {batch['code'].shape}") print(f" - control shape: {batch['control'].shape}") print(f" - caption_emb shape: {batch['caption_emb'].shape}") print(f" - attention mask shape: {batch['attn_mask'].shape}") print(f" - valid: {batch['valid'].item()}") if args.get_image: print(f" - image shape: {batch['image'].shape}") if args.get_prompt: print(f" - prompt: {batch['prompt']}") if args.get_label: print(f" - label shape: {batch['label'].shape}") if i + 1 >= args.max_show: break if __name__ == "__main__": main()