import os import torch MODEL_PATH = 'pretrained_models' pt_lightnings = [ 'vqgan_imagenet_f16_1024/ckpts/last.ckpt', 'vqgan_imagenet_f16_16384/ckpts/last.ckpt', 'vq-f8-n256/model.ckpt', 'vq-f8/model.ckpt', ] pts = [ 'vqgan_imagenet_f16_1024/ckpts/last.pth', 'vqgan_imagenet_f16_16384/ckpts/last.pth', 'vq-f8-n256/model.pth', 'vq-f8/model.pth', ] for pt_l, pt in zip(pt_lightnings, pts): pt_l_weight = torch.load(os.path.join(MODEL_PATH, pt_l), map_location='cpu') pt_weight = { 'state_dict': pt_l_weight['state_dict'] } pt_path = os.path.join(MODEL_PATH, pt) torch.save(pt_weight, pt_path) print(f'saving to {pt_path}')