""" Script to push and load custom PyTorch models to/from the Hugging Face Hub. """ import argparse import torch from tokenizer.tokenizer_image.vq_model_hf import VQ_models_HF, VQModelHF from huggingface_hub import hf_hub_download model2ckpt = { "GPT-XL": ("vq_ds16_c2i.pt", "c2i_XL_384.pt", 384), "GPT-B": ("vq_ds16_c2i.pt", "c2i_B_256.pt", 256), } def load_model(args): ckpt_folder = "./" vq_ckpt, gpt_ckpt, _ = model2ckpt[args.gpt_model] hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=vq_ckpt, local_dir=ckpt_folder) hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=gpt_ckpt, local_dir=ckpt_folder) # create and load model vq_model = VQ_models_HF[args.vq_model]( codebook_size=args.codebook_size, codebook_embed_dim=args.codebook_embed_dim) vq_model.eval() checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu") vq_model.load_state_dict(checkpoint["model"]) del checkpoint print(f"image tokenizer is loaded") return vq_model parser = argparse.ArgumentParser() parser.add_argument("--gpt-model", type=str, default="GPT-XL") parser.add_argument("--vq-model", type=str, choices=list(VQ_models_HF.keys()), default="VQ-16") parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") args = parser.parse_args() # load weights vq_model = load_model(args) # push to hub vq_model.push_to_hub("FoundationVision/vq-ds16-c2i") # reload model = VQModelHF.from_pretrained("FoundationVision/vq-ds16-c2i")