from transformers import AutoImageProcessor, AutoModel from PIL import Image import requests import torch import torch.nn as nn class ViT_Adapter(nn.Module): def __init__(self, input_dim=3, output_dim=768, attention=False, pool=False, nheads=8, dropout=0.1): super(ViT_Adapter, self).__init__() self.model = AutoModel.from_pretrained('autoregressive/models/vit-small') def forward(self, x): x = self.model(x,interpolate_pos_encoding=True) return x.last_hidden_state[:, 1:] if __name__ == '__main__': model = ViT_Adapter().cuda() import pdb;pdb.set_trace() print(sum(p.numel() for p in model.parameters())) inputs = torch.randn(4,3,512,512).cuda() outputs = model(inputs) print(outputs.shape)