# Modified from: # fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import torch.distributed as dist from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler from torchvision import transforms import numpy as np from PIL import Image import glob import argparse import os import json from utils.distributed import init_distributed_mode from dataset.augmentation import center_crop_arr from tokenizer.tokenizer_image.vq_model import VQ_models ################################################################################# # Training Helper Functions # ################################################################################# class CustomDataset(Dataset): def __init__(self, lst_dir, start, end, transform): img_path_list = [] for lst_name in sorted(os.listdir(lst_dir))[start: end+1]: if not lst_name.endswith('.jsonl'): continue file_path = os.path.join(lst_dir, lst_name) with open(file_path, 'r') as file: for line_idx, line in enumerate(file): data = json.loads(line) img_path = data['image_path'] code_dir = file_path.split('/')[-1].split('.')[0] img_path_list.append((img_path, code_dir, line_idx)) self.img_path_list = img_path_list self.transform = transform def __len__(self): return len(self.img_path_list) def __getitem__(self, index): img_path, code_dir, code_name = self.img_path_list[index] img = Image.open(img_path).convert("RGB") if self.transform is not None: img = self.transform(img) return img, code_dir, code_name ################################################################################# # Training Loop # ################################################################################# def main(args): """ Trains a new DiT model. """ assert torch.cuda.is_available(), "Training currently requires at least one GPU." # Setup DDP: # dist.init_process_group("nccl") init_distributed_mode(args) rank = dist.get_rank() device = rank % torch.cuda.device_count() seed = args.global_seed * dist.get_world_size() + rank torch.manual_seed(seed) torch.cuda.set_device(device) print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") # Setup a feature folder: if rank == 0: os.makedirs(args.code_path, exist_ok=True) # create and load model vq_model = VQ_models[args.vq_model]( codebook_size=args.codebook_size, codebook_embed_dim=args.codebook_embed_dim) vq_model.to(device) vq_model.eval() checkpoint = torch.load(args.vq_ckpt, map_location="cpu") vq_model.load_state_dict(checkpoint["model"]) del checkpoint # Setup data: transform = transforms.Compose([ transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) ]) print(f"Dataset is preparing...") dataset = CustomDataset(args.data_path, args.data_start, args.data_end, transform=transform) sampler = DistributedSampler( dataset, num_replicas=dist.get_world_size(), rank=rank, shuffle=False, seed=args.global_seed ) loader = DataLoader( dataset, batch_size=1, # important! shuffle=False, sampler=sampler, num_workers=args.num_workers, pin_memory=True, drop_last=False ) print(f"Dataset contains {len(dataset):,} images") # total = 0 for img, code_dir, code_name in loader: img = img.to(device) with torch.no_grad(): _, _, [_, _, indices] = vq_model.encode(img) codes = indices.reshape(img.shape[0], -1) x = codes.detach().cpu().numpy() # (1, args.image_size//16 * args.image_size//16) os.makedirs(os.path.join(args.code_path, code_dir[0]), exist_ok=True) np.save(os.path.join(args.code_path, code_dir[0], '{}.npy'.format(code_name.item())), x) # total += dist.get_world_size() print(code_name.item()) dist.destroy_process_group() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data-path", type=str, required=True) parser.add_argument("--code-path", type=str, required=True) parser.add_argument("--data-start", type=int, required=True) parser.add_argument("--data-end", type=int, required=True) parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=512) parser.add_argument("--global-seed", type=int, default=0) parser.add_argument("--num-workers", type=int, default=24) args = parser.parse_args() main(args)