import matplotlib.pyplot as plt from tqdm import tqdm from transformers import DPTImageProcessor, DPTForDepthEstimation from PIL import Image import os import sys import torch import numpy as np from torch.utils.data import DataLoader, Dataset current_directory = os.getcwd() sys.path.append(current_directory) from autoregressive.test.metric import RMSE, SSIM, F1score import torch.nn.functional as F from condition.hed import HEDdetector from condition.canny import CannyDetector from torchmetrics.classification import BinaryF1Score # Define a dataset class for loading image and label pairs class ImageDataset(Dataset): def __init__(self, img_dir, label_dir): self.img_dir = img_dir self.label_dir = label_dir self.images = os.listdir(img_dir) def __len__(self): return len(self.images) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.images[idx]) label_path = os.path.join(self.label_dir, self.images[idx]) image = np.array(Image.open(img_path).convert("RGB")) label = np.array(Image.open(label_path)) return torch.from_numpy(image), torch.from_numpy(label).permute(2, 0, 1) model = CannyDetector() # Define the dataset and data loader img_dir = 'sample/multigen/canny/visualization' label_dir = 'sample/multigen/canny/annotations' dataset = ImageDataset(img_dir, label_dir) data_loader = DataLoader(dataset, batch_size=16, shuffle=False, num_workers=4) # Instantiate the metric f1score = BinaryF1Score() f1 = [] i = 0 with torch.no_grad(): for images, labels in tqdm(data_loader): i += 1 images = images outputs = [] for img in images: outputs.append(model(img)) # Move predictions and labels to numpy for RMSE calculation predicted_canny = outputs labels = labels[:, 0, :, :].numpy() # Assuming labels are in Bx1xHxW format for pred, label in zip(predicted_canny, labels): pred[pred == 255] = 1 label[label == 255] = 1 f1.append(f1score(torch.from_numpy(pred).flatten(), torch.from_numpy(label).flatten()).item()) print(f'f1score: {np.array(f1).mean()}')