# Modified from: # DiT: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import argparse from tokenizer.tokenizer_image.vq_model import VQ_models from autoregressive.models.gpt_hf import GPT_models_HF, TransformerHF device = "cuda" if torch.cuda_is_available() else "cpu" def main(args): # Setup PyTorch: assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" torch.set_grad_enabled(False) # create and load gpt model precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] latent_size = args.image_size // args.downsample_size gpt_model = GPT_models_HF[args.gpt_model]( vocab_size=args.codebook_size, block_size=latent_size ** 2, num_classes=args.num_classes, cls_token_num=args.cls_token_num, model_type=args.gpt_type, ).to(device=device, dtype=precision) checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") if args.from_fsdp: # fsdp model_weight = checkpoint elif "model" in checkpoint: # ddp model_weight = checkpoint["model"] elif "module" in checkpoint: # deepspeed model_weight = checkpoint["module"] elif "state_dict" in checkpoint: model_weight = checkpoint["state_dict"] else: raise Exception("please check model weight, maybe add --from-fsdp to run command") # load weights gpt_model.load_state_dict(model_weight, strict=False) gpt_model.eval() del checkpoint # push to hub repo_id = f"FoundationVision/{args.gpt_model}-{args.image_size}" gpt_model.push_to_hub(repo_id) # reload model = TransformerHF.from_pretrained(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B") parser.add_argument("--gpt-ckpt", type=str, default=None) parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional") parser.add_argument("--from-fsdp", action='store_true') parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input") parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) parser.add_argument("--compile", action='store_true', default=True) parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384) parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256) parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) parser.add_argument("--num-classes", type=int, default=1000) args = parser.parse_args() main(args)