|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
|
|
class NullCtx: |
|
def __enter__(self): |
|
pass |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
pass |
|
|
|
|
|
class AmpOptimizer: |
|
def __init__( |
|
self, |
|
mixed_precision: int, |
|
optimizer: torch.optim.Optimizer, names: List[str], paras: List[torch.nn.Parameter], |
|
grad_clip: float, n_gradient_accumulation: int = 1, |
|
): |
|
self.enable_amp = mixed_precision > 0 |
|
self.using_fp16_rather_bf16 = mixed_precision == 1 |
|
|
|
if self.enable_amp: |
|
self.amp_ctx = torch.autocast('cuda', enabled=True, dtype=torch.float16 if self.using_fp16_rather_bf16 else torch.bfloat16, cache_enabled=True) |
|
self.scaler = torch.cuda.amp.GradScaler(init_scale=2. ** 11, growth_interval=1000) if self.using_fp16_rather_bf16 else None |
|
else: |
|
self.amp_ctx = NullCtx() |
|
self.scaler = None |
|
|
|
self.optimizer, self.names, self.paras = optimizer, names, paras |
|
self.grad_clip = grad_clip |
|
self.early_clipping = self.grad_clip > 0 and not hasattr(optimizer, 'global_grad_norm') |
|
self.late_clipping = self.grad_clip > 0 and hasattr(optimizer, 'global_grad_norm') |
|
|
|
self.r_accu = 1 / n_gradient_accumulation |
|
|
|
def backward_clip_step( |
|
self, stepping: bool, loss: torch.Tensor, |
|
) -> Tuple[Optional[Union[torch.Tensor, float]], Optional[float]]: |
|
|
|
loss = loss.mul(self.r_accu) |
|
orig_norm = scaler_sc = None |
|
if self.scaler is not None: |
|
self.scaler.scale(loss).backward(retain_graph=False, create_graph=False) |
|
else: |
|
loss.backward(retain_graph=False, create_graph=False) |
|
|
|
if stepping: |
|
if self.scaler is not None: self.scaler.unscale_(self.optimizer) |
|
if self.early_clipping: |
|
orig_norm = torch.nn.utils.clip_grad_norm_(self.paras, self.grad_clip) |
|
|
|
if self.scaler is not None: |
|
self.scaler.step(self.optimizer) |
|
scaler_sc: float = self.scaler.get_scale() |
|
if scaler_sc > 32768.: |
|
self.scaler.update(new_scale=32768.) |
|
else: |
|
self.scaler.update() |
|
try: |
|
|
|
if scaler_sc is None or scaler_sc <= 0.0: |
|
print(f"[Warning] Invalid scaler_sc = {scaler_sc}, using log2 fallback = -inf") |
|
scaler_sc = float("-inf") |
|
else: |
|
scaler_sc = float(math.log2(scaler_sc)) |
|
except Exception as e: |
|
print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True) |
|
raise e |
|
else: |
|
self.optimizer.step() |
|
|
|
if self.late_clipping: |
|
orig_norm = self.optimizer.global_grad_norm |
|
|
|
self.optimizer.zero_grad(set_to_none=True) |
|
|
|
return orig_norm, scaler_sc |
|
|
|
def state_dict(self): |
|
return { |
|
'optimizer': self.optimizer.state_dict() |
|
} if self.scaler is None else { |
|
'scaler': self.scaler.state_dict(), |
|
'optimizer': self.optimizer.state_dict() |
|
} |
|
|
|
def load_state_dict(self, state, strict=True): |
|
if self.scaler is not None: |
|
try: self.scaler.load_state_dict(state['scaler']) |
|
except Exception as e: print(f'[fp16 load_state_dict err] {e}') |
|
self.optimizer.load_state_dict(state['optimizer']) |
|
|